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Chapter 10

Geometry in 4 dimensions:
vectors, spinors and
twistors

Putting space and time together, physical spacetime is four rea -dimensional.
The Maxwell theory of electromagnetic fields (to be discussed in chapter 15) is
formulated in terms of four-dimensional vectors and tensors, but these trans-
form not under the group SO(4) of four-dimensional rotations, but instead the
Lorentz group SO(3, 1) of linear transformations preserving the Minkowski inner
product:

(x, y) = −x0y0 + x1y1 + x2y2 + x3y3

The vector space R4 with this inner product is called “Minkowski spacetime”.
Einstein’s special theory of relativity was essentially the realization that not

just electromagnetic fields, but the dynamics of all particles and fields should
transform in the same way under the Lorentz group, replacing the classical
Newtonian mechanics. In coming chapters we will see how quantum mechanics
and quantum field theory need to be reformulated to have Lorentz symmetry. In
this and the next chapter we’ll study in detail the geometry of four dimensions,
including the Minkowski geometry.

Recall that the group SO(3) has a three-dimensional Lie algebra so(3) of
antisymmetric 3 by 3 matrices. This has basis elements l1, l2, l3 given by el-
ementary antisymmetric matrices with all entries 0 except for a 1 and a −1.
One can add a row and column with index 0 and work with 4 by 4 matrices.
The Lie algebra so(3, 1) has so(3) as a Lie sub-algebra, but also three new basis
elements k1, k2, k3. These are symmetric and have all entries 0 except for a 1 in
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the index 0 column and row. One has for instance

l1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 k1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




One can check that the kj transform as the components of a vector under
the rotations generated by the lj . They don’t however span a Lie subalgebra.
and have Lie bracket relations

[k1, k2] = −l3, [k3, k1] = −l2, [k2, k3] = −l1

The kj generate transformations of R4 called “boosts”. For instance, expo-
nentiating k1 gives the linear transformation that leaves x2, x3 invariant and
take �

x0

x1

�
→

�
cosh sinh
sinh cosh

��
x0

x1

�

The structure of so(3, 1) simplifies if one complexifies the Lie algebra and
defines new basis elements Aj , Bj as the complex linear combinations

Aj =
1

2
(lj + ikj), Bj =

1

2
(lj − ikj)

The bracket relations decouple into two identical sets for the Aj and Bj respec-
tively, with the Aj relations

[A1, A2] = A3, [A3, A1] = A2, [A2, A3] = A1

These are the Lie bracket relations for the Lie algebra sl(2,C) = so(3)⊗C and
we have found that

so(3, 1)⊗C = sl(2,C)⊕ sl(2,C)

with the complexification breaking the Lie algebra up as the sum of two sub-
algebras.

In this chapter we’ll study geometry in four complex dimensions, only re-
turning to four real dimensions and Minkowski spacetime in the next chapter.
We will see that there are several different ways in which going to complex
dimensions clarifies and simplifies things, including

• Complex Lorentz transformations are pairs of SL(2,C) transformations
(as we saw at the Lie algebra level above).

• Allowing the time coordinate to be complex allows one todo “Wick ro-
tation”, going to imaginary time, where one recovers the usual positive
definite inner product.

• Complex spacetime can be very usefully represented as 2 by 2 complex ma-
trices, with simple behavior under complex rotations and simple relation
to spinors.

• Conformal transformations of complex spacetime are simply described us-
ing the group SL(4,C).
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10.1 Complex spacetime

10.1.1 Vectors

Complex spacetime vectors in V = C4 with complex coordinates z0, z1, z2, z3
can be identified with the complex matrices M(2,C) by

(z0, z1, z2, z3) ↔ Z =

�
z0 + z3 z1 − z2
z1 + z2 z0 − z3

�
(10.1)

If one acts on complex spacetime by the linear transformation

Z → ΩLZΩ−1
R (10.2)

where ΩL and ΩR are complex matrices of determinant 1, such transformations
preserve

detZ = z20 − z21 + z22 − z23

so are elements of the complex orthogonal group SO(4,C) (this would be in
standard form if we changed basis by a factor of i in the 1 and 3 directions).

This gives a homomorphism mapping the product group SL(2,C)L×SL(2,C)R
to SO(4,C). It turns out that this mapping is surjective and 2 to 1 (since
(−ΩL,−ΩR) and (ΩL,ΩR) give the same transformation). We find that

SL(2,C)L × SL(2,C)R = Spin(4,C)

where Spin(4,C) is the spin double-cover of SO(4,C). Note that it is only in 4
dimensions that the spin group is not a simple group, but decomposes into two
factors.

10.1.2 Spinors

In chapter 5 we discussed spinors in arbitary dimensions. Now we are interested
in their properties in the specific case of four dimensions, which has very specific
and unusual properties, due to the decomposition of Spin(4,C) into two copies
of SL(2,C).

The group SL(2,C) has two inequivalent spinor representations:

• The defining representation on C2, which we’ll denote S. This represen-
tation is a holomorphic map SL(2,C) → GL(2,C) (the inclusion map).

• The conjugate representation on C2 (action by conjugated matrices),
which we’ll denote S. This representation is an anti-holomorphic map.

Note that these representations are non-unitary (the only non-trivial unitary
representations of SL(2,C) are infinite-dimensional). These representations
are both unitary and unitarily equivalent to each other as representations of
SU(2) ⊂ SL(2,C). They are self-dual (equivalent to their dual representations).
We’ll later see that there an SL(2,C) invariant nondegenerate antisymmetric
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bilinear form (the symplectic form) that identifies S and S with their respective
duals.

Since Spin(4,C) has two SL(2,C) factors, it has four inequivalent spinor
representations, which we’ll call SL, SL, SR, SR. SL, SL are spinor representa-
tions of SL(2,C)L, trivial on SL(2,C)R, while SR, SR are spinor representations
of SL(2,C)R, trivial on SL(2,C)L.

The conventional relation between vectors and spinors is to take

V = SL ⊗ SR

defining vectors in terms of more fundamental spinor representations. Since both
factors are holomorphic, this is a holomorphic representation. Equivalently, one
has an identification of elements of V as complex linear maps

V = Hom(S∗
R, SL)

with the the description 10.1 of Z ∈ V corresponding to a particular choice of
bases for SR and SL.

10.1.3 The Clifford algebra and antisymmetric tensors

A future version may include discussion of the complex Clifford algebra here.

10.1.4 Twistors

Twistor geometry is a 1967 proposal [19] due to Roger Penrose for a very dif-
ferent way of formulating four-dimensional spacetime geometry. For a detailed
expository treatment of the subject, see [29]. Fundamental to twistor geom-
etry is the twistor space T = C4, as well as its projective version, the space
PT = CP3 of complex lines in T . The relation of twistor space to conventional
spacetime is that complexified and conformally compactified spacetime is iden-
tified with the Grassmanian M = G2,4(C) of complex two-dimensional linear
subspaces in T . A spacetime point is thus a C2 in C4 which tautologically
provides the spinor degree of freedom at that point. The spinor bundle S is the
tautological two-dimensional complex vector bundle over M whose fiber Sm at
a point m ∈ M is the C2 that defines the point.

The group SL(4,C) acts on T and acts transitively on the spaces PT and
M of its complex subspaces. Points in the Grassmanian M can be represented
as elements

ω = (v1 ⊗ v2 − v2 ⊗ v1) ∈ Λ2(C4)

by taking two vectors v1, v2 spanning the subspace. Λ2(C4) is six conplex di-
mensional and scalar multiples of ω gives the same point in M , so ω identifies
M with a subspace of P (Λ2(C4)) = CP5. Such ω satisfy the equation

ω ∧ ω = 0 (10.3)
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which identifies (the “Klein correspondence”) M with a submanifold of CP5

given by a non-degenerate quadratic form. Twistors are spinors in six dimen-
sions, with the action of SL(4,C) on Λ2(C4) = C6 preserving the quadratic
form 10.3, and giving the spin double-cover homomorphism

SL(4,C) = Spin(6,C) → SO(6,C)

To get the tangent bundle of M , one needs not just the spinor bundle S,
but also another two complex-dimensional vector bundle, the quotient bundle
S⊥ with fiber S⊥

m = C4/Sm. Then the tangent bundle is

TM = Hom(S, S⊥) = S∗ ⊗ S⊥

with the tangent space TmM a four complex dimensional vector space given by
Hom(Sm, S⊥

m), the linear maps from Sm to S⊥
m.

For a simpler analog of M , consider the space CP 1 of complex lines in C2.
There is also a tautological bundle over CP 1, with fiber at each point the point
itself. This bundle will be denoted L−1, and it has a dual bundle denoted
L. These are holomorphic line bundles and the holomorphic tangent bundle is
(L−1)∗ ⊗ L = L ⊗ L ≡ L2. For CP 1 one has homogeneous coordinates z1, z2
and can use as a coordinate z = z1/z2 away from the point where z2 = 0. The
conformal group SL(2,C) acts on this coordinate by

�
a b
c d

�
· z =

az + b

cz + d

Returning to the Grassmannian M , one can use as homogenous coordinates
the 4 by 2 complex matrix �

Z1

Z2

�

where Z1, Z2 are complex 2 by 2 matrices, giving coordinates for the complex
2-plane in C4 spanned by the columns. Away from planes with det(Z2) = 0,
such homogeneous coordinates can be put in the form

�
Z
1

�
(10.4)

and the 2 by 2 complex matrix Z gives a coordinate on M = Gr2,4(C).
The complex conformal group SL(4,C) acts on this coordinate by

�
A B
C D

�
· Z = (AZ +B)(CZ +D)−1

The subgroup with C = 0 and detA = detD = 1 acts by

X → AZD−1 +BD−1

This is the exactly the action of Spin(4,C) on complex spacetime of equation
10.2, together with a translation by BD−1, giving an action of the full complex
Poincaré group.
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An element of twistor space T is in the complex plane corresponding to Z
exactly when it is of the form

�
Z
1

�
π =

�
Zπ
π

�

for some π ∈ C2, since it then is a linear combination of the columns of 10.4.
So, elements of T , written as �

ω
π

�

where ω,π ∈ C2 are in the plane Z when they satisfy the incidence equation

ω = Zπ (10.5)

From the above description of Spin(4,C) = SL(2,C)L×SL(2,C)R ⊂ SL(4,C)
acting on T , we see that ω is in the representation SL, while π is in the repre-
sentation S∗

R.
As a representation of SL(2,C)L × SL(2,C)R, twistor space T = SL ⊕

S∗
R, which is the same thing as a Dirac spinor. But twistor space comes with

additional structure, since it is an irreducible representation of a much larger
group, the complex conformal group SL(4,C).

A conventional component notation for spinors (sometimes known as the van
der Waerden notation) is to write the components of spinors like ω transforming
as SL as ωA (here A = 1, 2), and those transforming like S∗

L as ωA. Indices are
raised and lowered by using an SL(2,C) invariant antisymmetric bilinear form
ϵ. Transformation properties under SL(2,C)R, are indicated in the same way,
but using dotted indices. So, the components of π would be written as πȦ.

Since Λ2(SL) = Λ2(SR) = C, SL and SR have (up to scalars) unique choices
of non-degenerate antisymmetric bilinear forms, and corresponding choices of
SL(2,C) ⊂ GL(2,C) acting on SL and SR. These give (again, up to scalars),
a unique choice of a non-degenerate symmetric form on SL ⊗ SR, such that

⟨Z,Z⟩ = detZ

Besides the spaces PT and M of complex lines and planes in T , it is also
useful to consider the correspondence space whose elements are complex lines
inside a complex plane in T . This space can also be thought of as P (S), the
projective spinor bundle over M . There is a diagram of maps

P (S)

PT M

µ ν

where ν is the projection map for the bundle P (S) and µ is the identification
of a complex line in S as a complex line in T . µ and ν give a correspondence
between geometric objects in PT and M . One can easily see that µ(ν−1(m)) is
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the complex projective line in PT corresponding to a point m ∈ M (a complex
two plane in T is a complex projective line in PT ). In the other direction,
ν(µ−1) takes a point p in PT to α(p), a copy of CP 2 in M , called the “α-plane”
corresponding to p.

In our chosen coordinate chart, this diagram of maps is given by

(Z,π) ∈ P (S)

�
Zπ
π

�
∈ PT Z ∈ M

µ
ν

The incidence equation 10.5 relating PT and M implies that an α-plane is a null
plane in the metric discussed above. This is because given two points Z1, Z2 in
M corresponding to the same point in PT , their difference satisfies

ω = (Z1 − Z2)π = 0

Z1 − Z2 is not an invertible matrix, so has determinant 0 and is a null vector.

10.2 Real forms

Physical spacetime has 4 real dimensions rather than complex dimensions. The
spinor and twistor aspects of geometry in four dimensions become significantly
more intricate subjects when one considers the several different possibilites for
4 real dimensional geometries complexifying to the same complex geometry
considered in the previous chapter.

10.2.1 Real forms of complex representations

One normally studies Lie group representations as linear actions on a complex
vector space V , but one should take into account the fact that the groups in-
volved are real Lie groups, so one can ask about representations on real vector
spaces. In some cases the groups are quaternionic and one can ask about rep-
resentations on quaternionic vector spaces. The various possibilities can be
studied by always working with representations on complex vector spaces and
keeping track of extra structures relating these to real or quaternionic vector
spaces. It turns out that there are three possibilities:

• Real representations. A representation on a complex vector space V is a
real representation if one has a representation on a real vector space VR

such that
VR ⊗R C = V

This is equivalent to the existence of an anti-linear map σ : V → V such
that σ2 = 1. σ provides a conjugation on V and one can identify VR as
the fixed points of the σ action. In this case the representation V and the
conjugate representation V are equivalent.
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• Quaternionic representations. A representation on a complex vector space
V is a quaternionic representation if one has an anti-linear map σ : V → V
such that σ2 = −1. In this case σ provides an action of the quaternion j
on V . The full quaternion algebra acts on V , with the i from the action
of complex numbers on V providing i, and taking k = ij. Such represen-
tations on V are equivalent to their conjugate representation. They are
sometimes called “pseudo-real” representation.

• Complex representations. A representation on a complex vector space V
is a complex representation if it is neither real nor quaternionic. In this
case V is not equivalent to its conjugate representation V . Given such
a V , one can form a real representation on V ⊕ V , taking σ to be the
conjugation that interchanges V and V .

An alternative point of view on this classification is that for an irreducible
real representation V of a real Lie group, the argument for Schur’s lemma no
longer gives that EndG(V ) = C, but that it can be any division algebra over R.
The classification above corresponds to the fact that the three division algebras
over R are R,C,H. For further details, see for example [20].

We will see that there are three different real forms of the complex repre-
sentations on vectors, spinors and twistors of chapter 10. In all cases the vector
representation is a real representation, but this will not be true for the spinors
and twistors.

10.2.2 The signature (2, 2) real form

One can obviously define a conjugation σ on the complex spacetime V by con-
jugating the matrix entries

σ ·
�
z0 + z3 z1 − z2
z1 + z2 z0 − z3

�
=

�
z0 + z3 z1 − z2
z1 + z2 z0 − z3

�

by conjugating the matrix entries. Then the fixed points of σ are the real
matrices

X =

�
x0 + x3 x1 − x2

x1 + x2 x0 − x3

�

The determinant of such a matrix is x2
0 − x2

1 + x2
2 − x2

3. Taking this as the
norm-squared of an inner product, the inner product is indefinite, of signature
(2, 2). So we have a real spacetime V2,2 such that

V2,2 ⊗R C = V

The corresponding real form of the group Spin(4,C) is the subgroup

Spin(2, 2) = SL(2,R)L × SL(2,R)R

preserving σ. The spinor representations are also real: with the usual conjuga-
tion σ. The fixed points are the representations of SL(2,R)L and SL(2,R)R
on R2.
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Twistors are also real, with σ acting on T by the usual conjugation, with
fixed points TR = R4. The real points of the compactified complex spacetime
G2,4(C) are the points of the real Grassmanian G2,4(R) of real 2-planes in R4.
The conformal group acting on this space is the real form SL(4,R) = Spin(3, 3)
of the complex spacetime conformal group SL(4,C) = Spin(6,C).

10.2.3 The signature (4, 0) real form: Euclidean spacetime

Euclidean spacetime is a real form VE of complex spacetime (i.e. VE ⊗R C =
V ), with a positive definite inner product. The spinor representations and
twistors are quaternionic, and we will begin by describing this real form in
purely quaternionic terms. In these terms one can readily identify the Euclidean
real forms Sp(1) × Sp(1) = Spin(4) of the complex rotation group Spin(4,C)
and SL(2,H) = Spin(5, 1) of the complex conformal group SL(4,C). The
group SL(2,H) is the group of quaternionic 2 by 2 matrices satisfying a single
condition that one can think of as setting the determinant to one. Here one can
interpret the determinant using the isomorphism with complex matrices, or, at
the Lie algebra level, sl(2,H) is the Lie algebra of 2 by 2 quaternionic matrices
with purely imaginary trace.

Quaternions and four-dimensional geometry

Just as C is the vector space R2 with a basis {1, i}, and a multiplication law
determined by the relation i2 = −1, the quaternion algebra H is the vector
space R4 with a basis {1, i, j,k} and a multiplication law determined by the
relations

i2 = j2 = k2 = −1, ij = −ji = k, ki = −ik = j, jk = −kj = i

Elements of H can be written as

q = q0 + q1i+ q2j+ q3k, qj ∈ R

The standard Euclidean norm-squared function on the vector space H = R4

can be written in terms of quaternions as

|q|2 = qq̄ = q20 + q21 + q22 + q23

where
q̄ = q0 − q1i− q2j− q3k

The unit norm quaternions form a group under multiplication, called Sp(1),
which as a manifold can be identified with the three dimensional sphere S3 ⊂
R4. Pairs (u, v) of unit quaternions give the product group Sp(1)L×Sp(1)R. An
element (u, v) of this group acts on q ∈ H = R4 by left and right quaternionic
multiplication

q → uqv−1
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This action preserves norms of vectors and is linear in q, so one has a homo-
morphism

Φ : (u, v) ∈ Sp(1)L × Sp(1)R → {q → uqv−1} ∈ SO(4)

Φ is surjective, and pairs (u, v) and (−u,−v) give the same element of SO(4).
The group Sp(1)L × Sp(1)R is the group Spin(4), a non-trivial double cover
of the group SO(4). The diagonal subgroup of pairs (u, v) such that u = v
leaves invariant 1 and acts by an SO(3) transformation on the R3 ⊂ H of
imaginary quaternions. Φ restricted to this diagonal subgroup is a double cover
homomorphism from the group Spin(3) = Sp(1) to the group SO(3).

There are two inequivalent quaternionic spinor representations of Spin(4).
We’ll denote SL the representation of Spin(4) on H given by Sp(1)L acting on
the left, Sp(1)R acting trivially, and SR the representation of Spin(4) on H
given by Sp(1)L acting trivially, Sp(1)R acting on the right.

For a Euclidean spacetime version of twistor space, one can take T =
H2, with T a quaternionic representation of the conformal group SL(2,H) =
Spin(5, 1). A spacetime point will be a quaternionic line in T = H2, and space-
time ME will be HP 1 = S4, the conformal compactification of the Euclidean
space R4. The group SL(2,H) acts transitively on ME = HP 1 = S4 by con-
formal transformations.

Just as in the case of CP 1, one can use as homogeneous coordinates

�
X1

X2

�

where X1, X2 ∈ H. Away from X2 = 0, these can be put in the form

�
X
1

�

with X ∈ H. The conformal group SL(2,H) acts by

�
A B
C D

�
·X = (AX +B)(CX +D)−1

where now A,B,C,D ∈ H. The Euclidean group in four dimensions will be the
subgroup of elements of the form

�
A B
0 D

�

such that A and D are independent unit quaternions, thus in the group Sp(1),
and B is an arbitrary quaternion. The Euclidean group acts by

X → AXD−1 +BD−1

with the spin double cover of the rotational subgroup now Spin(4) = Sp(1) ×
Sp(1).
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Relating quaternionic and complex

While we have seen that the translations, rotations and conformal transfor-
mations of four dimensional Euclidean geometry can be efficiently understood
purely in terms of quaternions, it is often desirable to instead work with com-
plex quantities, together with an antilinear σ satisfying σ2 = −1 on quaternionic
representations and σ2 = 1 on real representations (note that one gets real rep-
resentations when working with quaternions since the tensor product of two
quaternionic representations is real).

To identify H with C2, there are various choices to be made:

• One can identify C as the subalgebra of H spanned by 1, u, where u is
any element satisfying u2 = −1. There is an S2 of possibilities (any unit
length linear combination of the purely imaginary quaternions).

• Choosing a v ∈ H such that v2 = −1 and uv = −vu gives a C-basis of H,
so an identification with C2.

The conventional choices made are: u = i (giving a consistent meaning for
the symbol “i”) and v = j. Then an arbitrary quaternion can be written as

q = z1 + jz2

or as a vector �
z1
z2

�

Here one is also making the choice that, as a complex vector space, the subal-
gebra of H of complex numbers acts on H on the right. As a complex spinor
representation of Sp(1), the group acts on the left, with a commuting action
of H on the right. This will be a quaternionic representation, with a standard
choice of σ right multiplication by j. Since

(z1 + jz2)j = jz1 + j2z2 = −z2 + jz1

σ acts by

σ :

�
z1
z2

�
→

�
−z1
z2

�

On the Euclidean version of twistor space, one has T = C4, with quaternionic
structure map σ given by

σ :




z1
z2
z3
z4


 →




−z1
z2
−z3
z4


 (10.6)

The group SL(2,H) acts on this quaternionic representation, which is just the
complex form of the action on H2.
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Given this identification of H with C2, one can use the left action of H on
this C2 to get an isomorphism of algebras between H and the subalgebra of
M(2,C) of matrices of the form

�
α −β
β α

�
(10.7)

for α,β ∈ C. As an algebra , M(2,C) has two inequivalent real forms: M(2,R)
and H are non-ismorphic algebras satisfying

M(2,R)⊗R C = H⊗R C = M(2,C)

The usual conjugation of complex matrices has fixed points M(2,R). An in-
equivalent conjugation σ on M(2,C) corresponding to the real form H is given
by

σ ·
�
α γ
β δ

�
=

�
δ −β
−γ α

�

This satisfies σ2 = 1 and is clearly antilinear, with fixed points of the form 10.7.
More explicitly, the identification 10.7 takes

1 ↔ 1 =

�
1 0
0 1

�
, i ↔

�
i 0
0 −i

�
, j ↔

�
0 −1
1 0

�
, k ↔

�
0 −i
−i 0

�

Physicists often like to use instead the Pauli matrices, taking

1 ↔
�
1 0
0 1

�
, i ↔ −iσ1 =

�
0 −i
−i 0

�
, j ↔ −iσ2 =

�
0 −1
1 0

�

k ↔ −iσ3 =

�
−i 0
0 i

�

The correspondence between H and 2 by 2 complex matrices is then given by

q = q0 + q1i+ q2j+ q3k ↔
�
q0 − iq3 −(q2 + iq1)
q2 − iq1 q0 + iq3

�

In general we’ll avoid choosing between the mathematicians and physicists by
avoiding an explicit choice of one of the two identifications above.

Since

det

�
q0 − iq3 −(q2 + iq1)
q2 − iq1 q0 + iq3

�
= q20 + q21 + q22 + q23

we see that the length-squared function on quaternions corresponds to the de-
terminant function on 2 by 2 complex matrices. Taking q ∈ Sp(1), so of length
one, the corresponding complex matrix is in SU(2).

Still to do? Understand vectors as a tensor product h = H⊗H H, explicitly
how the spinor representation as a right action works. The usual conjugation
on quaternions in terms of matrices?
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Projective twistor space and Euclidean twistors

The projective twistor space PT is fibered over S4 by complex projective lines

CP 1 PT = CP 3

S4 = HP 1

π (10.8)

The projection map π is just the map that takes a complex line in T identified
with H2 to the corresponding quaternionic line it generates (multiplying ele-
ments by arbitrary quaternions). In this case the conjugation map σ of 10.6 has
no fixed points on PT , but does fix the complex projective line fibers and thus
the points in S4 ⊂ M . The action of σ on a fiber takes a point on the sphere to
the opposite point, so has no fixed points.

In the Euclidean case, the projective twistor space has another interpreta-
tion, as the bundle of orientation preserving orthogonal complex structures on
S4. A complex structure on a real vector space V is a linear map J such that
J2 = −1, providing a way to give V the structure of a complex vector space
(multiplication by i is multiplication by J). J is orthogonal if it preserves an
inner product on V . While on R2 there is just one orientation-preserving or-
thogonal complex structure, on R4 the possibilities can be parametrized by a
sphere S2. The fiber S2 = CP 1 of 10.8 above a point on S4 can be interpreted
as the space of orientation preserving orthogonal complex structures on the four
real dimensional tangent space to S4 at that point.

One way of exhibiting these complex structures on R4 is to identify R4 = H
and then note that, for any real numbers x1, x2, x3 such that x2

1 + x2
2 + x2

3 = 1,
one gets an orthogonal complex structure on R4 by taking

J = x1i+ x2j+ x3k

Another way to see this is to note that the rotation group SO(4) acts on orthogo-
nal complex structures, with a U(2) subgroup preserving the complex structure,
so the space of these is SO(4)/U(2), which can be identified with S2.

More explicitly, in our choice of coordinates, the projection map is

π :

�
s

s⊥ = Zs

�
→ Z =

�
x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3

�

For any choice of s in the fiber above Z, s⊥ associates to the four real coordinates
specifying Z an element of C2. For instance, if s =

�
1, 0

�
, the identification of

R4 with C2 is 


x0

x1

x2

x3


 ↔

�
x0 − ix3

−ix1 + x2

�

The complex structure on R4 one gets is not changed if s gets multiplied by a
complex scalar, so it just depends on the point [s] in the CP 1 fiber.
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For another point of view on this, one can see that for each point p ∈ PT ,
the corresponding α-plane ν(µ−1(p)) in M intersects its conjugate σ(ν(µ−1(p)))
in exactly one real point, π(p) ∈ M4. The corresponding line in PT is the line
determined by the two points p and σ(p). At the same time, this α-plane
provides an identification of the tangent space to M4 at π(p) with a complex
two plane, the α-plane itself. The CP 1 of α -planes corresponding to a point in
S4 are the different possible ways of identifying the tangent space at that point
with a complex vector space.

The correspondence space P (S) (here the complex lines in the quaternionic
line specifying a point in M4 = S4) is just PT itself, and the twistor correspon-
dence between PT and S4 is just the projection π. In the Euclidean case the
action of the real form SL(2,H) is transitive on PT .

10.2.4 The (3, 1) real form: Minkowski spacetime

The Maxwell equations describing electromagnetism (see section ??) are invari-
ant under the group SO(3, 1) acting on spacetime, taken to be the Minkowski
spacetime R3,1, the four dimensional space R4 with an indefinite inner product
given by

(x, y) ≡ x · y = −x0y0 + x1y1 + x2y2 + x3y3

(here xj , yj are coordinates on R4, with j = 0 the time coordinate). Einstein’s
discovery of special relativity was based on the observation that for consistency
one should describe not just electromagnetism but also mechanics in a formal-
ism based on taking spacetime to be R3,1, with physical laws invariant under
SO(3, 1).

Vectors v ∈ R3,1 such that |v|2 = v ·v > 0 are called “space-like”, those with
|v|2 < 0 “time-like” and those with |v|2 = 0 are said to lie on the “light cone”.
Suppressing one space dimension, the picture to keep in mind of Minkowski
spacetime looks like this:
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x0

x1 x2

x0 = 0

(plane)

|x|2 < 0
(timelike)

|x|2 = 0
(light cone)

|x|2 > 0
(spacelike)

Figure 10.1: Light cone structure of Minkowski spacetime.

Like R2,2 and H, R3,1 is a real form of M(2,C). The conjugation σ is given
by

σ · Z = −Z†

with fixed points the skew-Hermitian matrices, of the form

X = (−i)

�
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

�

which have determinant

detX = −x2
0 + x2

1 + x2
2 + x2

3

The subgroup of Spin(4,C) = SL(2,C)L × SL(2,C)R that commutes with
the action of σ and thus preserves skew-Hermiticity is the group SL(2,C), with
Ω ∈ SL(2,C) acting by

X → ΩXΩ†

where Ω† is the adjoint (conjugate transpose) of Ω. Recall that SL(2, C) has
two kinds of spinor representations: S (action by Ω) and the conjugate rep-
resentation S (action by Ω). Vectors in Minkowski spacetime thus transform
under the Lorentz group SL(2,C) as the tensor product S ⊗ S.
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Explain that SL(2,C) is double cover of component of SO(3, 1) preserving
time orientation.

Spinors have some quite different properties in Minkowski spacetime than
in the signature (2, 2) and Euclidean cases. These SL(2,C) representations are
not real or quaternionic, but complex, so there is no antilinear σ : S → S or
σ : S → S commuting with SL(2,C). What there is instead is an antilinear
map σ from S to S∗, which is a map of SL(2,C) representations

σ : S → S
∗

This takes a representation matrix Ω to (Ω†)−1 and satisfies σ2 = 1. σ gives

a real structure on the SL(2,C) representation S ⊕ S
∗
which interchanges the

terms in the direct sum. This real SL(2,C) representation is known to physicists
as the Majorana representation. On σ fixed points it is an SL(2,C) represen-
tation on a 4-real dimensional vector space, equivalent to considering SL(2,C
as a real Lie group, and C2 as a real vector space (check this).

The twistor geometry in the Minkowski signature case also has different
properties. As in the case of spinors, twistor space T is a complex representation
of SL(4,C), and one needs to consider not just T with an antilinear map σ,
but T and T ∗ with an antilinear map between them. Such a map σ will give
an identification of T and T

∗
, and so a non-degenerate Hermitian form Φ on

T . This picks out a unitary subgroup of SL(4,C) which turns out to have
signature (2, 2). So, in this case, the real form of the complex conformal group
is the conformal group SU(2, 2) = Spin(4, 2).

The conformal compactification of Minkowski space is a real submanifold of
M , denoted here by M3,1. It is acted upon transitively by the conformal group
Spin(4, 2) = SU(2, 2). This conformal group action on M3,1 is most naturally
understood using twistor space, as the action on complex planes in T coming
from the action of the real form SU(2, 2) ⊂ SL(4,C) on T .

SU(2, 2) is the subgroup of SL(4,C) preserving a real Hermitian form Φ of
signature (2, 2) on T = C4. In our coordinates for T , a standard choice for Φ is
given by

Φ

��
ω
π

�
,

�
ω′

π′

��
=

�
ω π

��0 1
1 0

��
ω′

π′

�
= ω†π′ + π†ω′ (10.9)

Minkowski space is given by complex planes on which Φ = 0, so

Φ

��
Xπ
π

�
,

�
Xπ
π

��
= π†(X +X†)π = 0

(recall that X are skew-Hermitian matrices).
One can identify compactified Minkowski space M3,1 as a manifold with the

Lie group U(2) which is diffeomorphic to (S3×S1)/Z2. The identification of the
tangent space with anti-Hermitian matrices reflects the usual identification of
the tangent space of U(2) at the identity with the Lie algebra of anti-Hermitian
matrices.
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SL(4,C) matrices are in SU(2, 2) when they satisfy

�
A† C†

B† D†

��
0 1
1 0

��
A B
C D

�
=

�
0 1
1 0

�

The Poincaré subgroup P of SU(2, 2) is given by elements of SU(2, 2) of the
form �

A B
0 (A†)−1

�

where A ∈ SL(2,C) and A†B = −B†A. These act on Minkowski space by

X → (AX +B)A†

BA† is anti-Hermitian and gives arbitrary translations on Minkowski space. The
Lorentz subroup is Spin(3, 1) = SL(2,C) acts by

X → AXA†

Here SL(2,C) is acting by the standard representation on S, and by the conjugate-

dual representation on S
∗
.

The SU(2, 2) action onM has six orbits: M++,M−−,M+0,M−0,M00, where
the subscript indicates the signature of Φ restricted to planes corresponding
to points in the orbit. The last of these is a closed orbit M3,1, compactified
Minkowski space. Acting on projective twistor space PT , there are three orbits:
PT+, PT−, PT0, where the subscript indicates the sign of Φ restricted to the
line in T corresponding to a point in the orbit. The first two are open orbits
with six real dimensions, the last a closed orbit with five real dimensions. The
points in compactified Minkowski space M00 = M3,1 correspond to projective
lines in PT that lie in the five dimensional space PT0. Points in M++ and M−−
correspond to projective lines in PT+ or PT− respectively.

10.3 For further reading

Among the places one can find more details of the material in this chapter, see
[29] and [16].
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