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SOLUTION OF THE PATH INTEGRAL FOR THE H-ATOM
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The Green'’s function of the H-atom is calculated by a simple reduction of Feynman’s path integral to gaussian form.

With increasing interest in path integral techniques both in field theory and many-body physics [1] it is worth-
while to study their application to the solution of standard non-trivial quantum-mechanical problems. Hopefully,
this may help discovering new treatments of non-gaussian integrals.

In this note we present the execution of the path integral for the physically most important quantum-mechanical
problem: the H-atom.

Feynman’s [2] formula for the Green’s function reads

Xp,tp D 3 tp
K(xp, 13 %45 25) =f D3x —,5’3 exp {1f de(p-% - p*2m +62/r)} , (1)
Xgrty [27] ta
and is not readily integrable due to the 1/r potential. If we parametrize the paths in terms of a new auxiliary “‘time”
t
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On the right-hand side 5;,, 5, may be used as independent variables if the connection (2) is enforced via a §-function
as:
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K(xp, ty: x,,t,) .=_f dsbé(tb - ta—f dsr(s)) exp {ie2(sp ~ 5,)}
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The last part of the equation arises, of course, from a Fourier decomposition of the §-function. The expression may
be multiplied, without changing it, by a dummy path integral involving a new, completely arbitrary pair of canonical
coordinates x4, py:

o (xa)p, Sp (Dp4 sp
f d(x4)b{ Dxy ] &P [lf dS(p4xl¢“r(S)p§/2M)]
—o (xa)a. 5,4 Sq
17 Py P
=fdl74 b f d(xg)p exp{il(xq)p — (x4),1P4} exp {Z_r;f ds r(s) ] =1. (7
g Sa

Notice that this identity holds for any function r(s), in particular for r(s) = (xz(s))l/ 2 This choice brings the path
integral in eq. (6) to the four-dimensional form

oo Sp
—jo; d(xy)p f@“x 2—:;71 exp {i{; ds(p-x' —rp?2m +Er)} . 8)

We now introduce a canonical change of variables*! from (x, p) to (u, p,) such that r = u?
4 4 : 4
xa=bZ=)1 A, @u, (@=1,2,3), dx4=2bZ_)1A4b(u)dub, pa=§—r—bZ=>IAab(u)(pu)b (@=1,2,3,4), (9)

with a matrix

U3 Uy Ul u2

—uy —uU; U u
Aw) = 2 1 4 3 (10)
Uy Uy Uz Uy
u4 —M3 U2 —ul
Then the expression (8) becomes
oo xp.(xa)p 4 5h
1 d(x4)p D*p,
P4 : ot 2 1 2.2
167, f Y f u 2 exp 1f ds(p,,*u' —py[2u — 3 uw u*)) , (11
- Xg,(x4)g Sa

where yt=4m and w? = —E[2m. Apart from the integral over d(x,), /7, this is the Green’s function of a harmonic
oscillator in four dimensions. In order to do this integral we express u in terms of

sin§ cos ¢
x=r| sinf sinyg |, (12)

cos @

and an auxiliary angle « in the form
sin30 cos i (a+ )

sin 1 0 sin 3 (a + ¢)

weF (13)

cosi B cosi(a—y)|’
cos3 0 sin (a— )
*1 Applied a long time ago in astronomy [3].
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Then [7,, d(x4),/r) can be rewritten as

= d(x 4n
[ (4)b=f doy 20, n=+1,#2,%3, (14)
0

Fp ap—aptdnn

— oo

thereby decomposing it into a sum over periodically shifted end point values of the angle oy, and an integral over
one period. Since the paths going to a certain final u; can arrive at any ay + 4mn, the sum is part of the Green’s
function of the harmonic oscillator (as always if cyclic variables are used [1]). Thus (11) can be rewritten as

4
1
@f day, F4(sy, — 5,) exp{—mF2(s, — 5,) [(r, + ) cos (s — 5,) — 21,y ]}, (15)
0

where F(s;, — s,) is the usual fluctuation factor of the one-dimensional oscillator

F(sp —s,) = [uw/2misin w(sy — sa)]l/2 . (16)
Performing the integral over da; one obtains

(m/4ry) F4(spy, — 5,) [o(2nF2(s, — s,) 2_1/2(’a’b tx, 'xb)lfz) exp {~mF2(s), — s)rgtrp)coswlsy —s,)k, (17)

which may be inserted into eq. (6) to yield the closed expression for the H-atom Green’s function:
(2p)'/2 1+
K(xbyxtpE) _1 fd )2 0 (Zpol—_p-(rarb+xa'xb)1/2 exXp po = (r +rb) (18)

Here we have deformed the contour into the complex plane by setting s = —is with s real and substituted p =
exp {— 2w (5} — §,)}. The variables v and p;, stand short for » = e2/2¢ = (—me?[2E)/2 and Po= (—2mE/2,
The representation is, of course, the Fourier transform of Schwinger’s [4] formula and has the same region of
convergence .
As far as wave functions are concerned, we may symmetrize the integrand of (15) in u, (since oy, > a, + 27
corresponds to #;, = —uy ) and expand, for £ <0 as

E exp

=0

—iw (En + 2) (sp—s )} Viningngng Up) Vi nanan, (g) » (19)

where Zf;l n;=2(n—1)=0,2,4,..and Y, n2n3n4(u) denotes the product of four usual oscillator wave functions.
Inserting this into (4) gives

had 2
m Do Py
K(xb,x ——2 ?0 — ”0‘[ dab( ﬂwﬂ1n2”3”4(ub))( Ew:1n2n3n4(ua)). (20)
O

The sum displays explicitly the bound state poles at
E,=—me*[2n2, n=1,2,3,.., (21)

with the residues being the wave functions in unconventional quantum numbers. For E >0 the eq. (20) requires
analytical continuation via Sommerfeld—Watson transformation. This provides for the continuum wave functions.
The details of this will be discussed elsewhere.

For previous attempts to calculate the Coulomb path integral see refs. [5,6].

The authors thank W. Janke for useful discussions.
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