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Inertial Mass Energy Equivalence

J.P. Wesley

Abstract

Introducing an inertial mass equivalent of the Coulomb potential energy, M = '—U,/cz, t{*)e rz.zte a
which U, decreases as a charge q recedes from a fixed charge q' equal_s the rate of increase m'kmetzc
energy, dU,Jdt = -V -d[(m - UyP)V]/dt, where m is the mazterzal mass of q. Integrat;ng, the
total energy is E = m(1 - (1 - V¥E)'%) + Uy(1 - VIE)'2 = U, + (m - UyC*)V¥2. The
portion U = (qq'/R)(1 - V*/2C%) is the Weber velocity potential. The net mass of an .eIectron,
m, - eV/c, in a uniform electrostatic potential field ¢ has been measured as a functwn ‘of {
Applying the Weber theory to gravitation, -Gmm' replacing qq', the far masses in the universe
yield the force F = (m®y*)a = ~(U/c?)a in agreement with Mach’s prznc.lple and me{'tzal
mass-potential energy equivalence. Associating an inertial mass with the kinetic energy K yields
neomechanics, where K = m(1/(1 - V/c2)'? - 1).

Key words: inertial mass—energy equivalence, Weber potential, Mach’s principle,
neomechanics

1. DERIVATION OF THE WEBER POTENTIAL Integrating (3) yields the total energy E as

The concept of mass-energy equivalence is generally
limited to the idea that material mass can be converted to :
active energy, such as thermal or radiant energy. Here the N ,; v? (5)
concept is applied to the inertial mass M equivalent to the E=cm+ U, -c'm) 1"6—2’ '
electrostatic potential energy U, such that .

m=-Yo,
¢

where the Coulomb potential energy is

v, =%

R

where qis a chargeatr, q9'isachargeatr’, andR = ir-r.
The rate that ¢ loses potential energy when receding from

where the constant of integration has been chosen as E -f
(1)  ¢*m. From this derivation of (5) the velocity V is the rate 0
separation of the charges, so

_dR R-v (6)

(2)
and it is not the general relative velocity v - v/ = dr/dt -
dr'/ds.

For small values of V%2 (5) yields

the fixed charge ¢’ equals the rate that work is done on the

charge q to increase its kinetic energy; thus,

E=yU +(m....U_° Y.:. (7)
0 ¢ )2 .
du dM'Vv dim-U_y/¢ - .
==V Ldl__l =_y.4im =~ d;r_/ V. (3)  The portion of this total energy given by
2 ’ 2
where V = dR/dt, mis the material mass of the ch U=0, (1 - L) = (ﬂ)(l "L) @l ~'
M’, the total mass, is © chargeq, and 2 A 2¢° ]
Maz=m- ﬂ’_
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(4) s the Weber™™ velocity potential. 1t may be seen that thg .
Weber potential is a proper potential energy, since taking®



J.P. Wesley

time derivative of (7) yields v F = v - ma = -dU/dt, where
Fis the force on g and v and a are the velocity and accelera-
tion of ¢, and for U static -dU/dt = -v - VU in agreement
with Newton’s second law for a body of mass accelerated
in the potential field U.

2. THE WEBER THEORY IS RELATIVISTIC

The derivation of the Weber velocity potential (8) depends
only upon the motion and energy of the charge g in the field
ofafixed charge q'. However, if the two charges are assumed
to exist in an otherwise empty universe, then R and V =
dR/dt in (8) are the relative separation distance and the
relative velocity; so the Weber potential (8) may be regarded
as a pure relativistic expression.

Since absolute space exists,’® and the fundamental
physical laws applicable in the laboratory depend upon this
preferred absolute rest-frame, the relativistic nature of
Weber’s potential must mean that it can only be approxi-
mately valid. In particular, relativistic theories in general,
such as classical celestial mechanics, are adequate approxi-
mations if the finite velocity of action ¢ can be neglected.
This means that time intervals of interest must be large so
that Af > L/, where L is the size of the system of interest.
Thus, action, proceeding with velocity ¢, is able to establish
asteady-state equilibrium throu ghout the system of interest
In the time At. Since the finite time of propagation of action
Is being neglected, effects may be assumed to occur instanta-
neously. The Weber theory is, thus, a valid approximation for
slowly varying effects where time intervals of interest are large.

3. THE MIKHAILOV EXPERIMENT MEASURING THE
INERTIAL MASS EQUIVALENT OF POTENTIAL
ENERGY

The‘Mikhailov‘” experiment verifies directly the existence
of an inertial mass equivalent to the electrostatic potential
energy, (1). He examined electrons moving in a uniform
electrostatic potential field, where the total net mass of an
electron is given by (4). An oscillating neon glow lamp was

Placed_inside a hollow conducting sphere charged to the

Potential ¢"to yield the desired uniform potential energy

Uo=e¢ The frequency of the glow lamp depends upon the

;‘:{5_5 of the el.ectron M, as given by (4). Varying the electro-

o IC potential on the conducting sphere from -3000

13000 V, he found a linear decrease in the ratio
o ; me){mer as expected from the theory, where, according
{ )» this ratio is - Uo/czm, = -e;’/c’me. For 3000 V he found
this ragst) e = ~(3.0 = 0.3) X 107, According to the theory
that thm should be - U /2 = ~edJc’m, = -6 X 10, The fact
signi ¢ €xperimental value is one half the theoretical is not
8llicant here, 45 the order-of-magnitude agreement is

sati i
erroifsactory »and there seem to be possibilities for systematic

An alternatjye
Mass of the g
Undertak

Tesults,

independent method for measuring the
€ctron in a uniform electrostatic field should be
€ as a check on the theory and on Mikhailov’s

4. WEBER GRAVITATION AND MACH’S PRINCIPLE

Therelativity approximation is appropriate for gravitation,
where only slowly varying effects are involved and V?/? <<
1. Thus, replacing g4 by - Gmm’ in (8) yields

e

which may be regarded as the Weber potential applied to
gravitation.!*”)

The force on the mass m due to a static mass 7’ may be
obtained from :

(10)

—_—— -y .F'
dt

where U is given by (9). The Weber force is thus found to be

(11)

2 2 .
F=_G(mm'R)[l+z__3(R.v/cR) .R aJ'

c 2 ¢

where a = dv/dt is the acceleration of the mass m.
For a continuous distribution of static mass, m’ may be

replaced by

ml - d)rlpl(rl) (12)

and (11) integrated over all space to yield

2 .
F (1+_\%)V¢_v(v-zV)<D_9_2§_+(v-V) H (@ V)H’ (13)
m ¢

¢ ¢ 2¢2 2

where the gravitational potentials are defined by

(14)

3.7 ot 3.0 IR
@:Gfd'p andH:GId”’ .
R R

The correctness of (13) may be established by reversing th.e
steps: by introducing (14) into (13), carrying out Fhe indi-
cated differential operations under the integral sign, and
finally replacing [d%r'p' by m'.

In an infinite uniform isotropic universe in-the-large (the
cosmological principle) the potentials ® and H produced.by
the far masses in the universe cannot vary locally from pO}nt
to point, so all of the terms involving differentiation with
respect to Vin (13) must vanish. Thus, the force produced2 by
the far masses in the universe is given simply by -m(®/c*)a.
In order to accelerate a body a local force must act against
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this force produced by the far masses in the universe; thus,

F(local) = (m:f°)a = —(-CU;)a =ma,

which is seen to be Newton’s second law, which then
satisfies Mach'’s principle, as well as the equivalence of
inertial mass and potential energy, provided Weber’s
cosmological condition®

(15)

(16)

is satisfied.

It may be noted that mathematically this result corre-
sponds to the inertial properties of an electric charge moving
in a uniform electrostatic potential field, such as produced
inside a large hollow “distant” charged conducting sphere,
the situation for the Mikhailovexperiment (Section 3 above).

5. DERIVATION OF NEOMECHANICS

Neomechanics is Newtonian mechanics in absolute space-
time extended to include the inertial mass equivalent of the
kinetic energy K of a body. From Newton'’s second law the
time rate of increase of the kinetic energy is then given by

dK v-d(m+K/c)v]
R _yvedm+Ricv] 17
dt dt (7)
where the total inertial mass M is given by

K

M§m+,c—,, (18)

and where m is the rest mass equal to M when K = 0.
Integrating (17) yields

K=c'miy —l)=c’m[——l——— IJ, (19)

h_vl/cl -

where the constant of integration has been chosen so that
K=0whenv=0.

The total inertial mass M, from (18) and (19), is then

(20)

From inertial mass-energy equivalence thi inerti
_ s total inertial
mass M, (20), implies a total energy E given by

64

E=c’my=K+c'm, (21)

which equals the kinetic energy plus a rest-mass energy
given by

E, =c’m. (22)

Newton'’s second law for neomechanics becomes, using
(20),

_d(myv) 23
F—————dt . (23)

The problem in neomechanics, as in Newtonian mechan-
ics, involves integrating Newton's second law, but as given
by (23) instead of by F = ma.

The empirical validity of mass change with velocity, (20),
or neomechanics, was first indicated by Kaufmann's”
experiments. But due to the experimental uncertainties and
the uncertainty in the Maxwell electromagnetic theory that
was assumed, his results were not conclusive. However,
Bertozzi,!* by relating the time-of-flight velocity of elec-
trons v to their kinetic energy K, known from the accelerat-
ing electric potential difference, was able to confirm (19)a
reasonable, even for electron velocities approaching the
velocity ¢. He was thus able to confirm mass change with
velocity, (20).

Since neomechanics involves absolute space-time, the
Monstein-Wesley!'") experiment, measuring the absolut¢
velocity of the solar system from the anisotropy of the cosmic
muon flux, is of considerable importance. It demonstrates for
the first time empirically that the velocity v in the gamm2
factor 7 = 1/(1 - v*c%)? is the unique absolute velocity and
not some arbitrary relative velocity. The Monstein-Wesley
experiment helps to confirm empirically the validity of
neomechanics in absolute space-time. -

6. DISCUSSION

It is important to note the limitations of the present
theory. It does not provide all of the needed answers.

The association of an inertial mass with potential energl
yields a valuable extension of classical potentials not involv-
ing v*/c* to velodity-dependent potentials involving v*/¢>. B!
the extension is still limited to slowly varying effects
relativity, and v?%2 << 1. It does not thus provide th¢
electrodynamics needed for rapidly varying effects, for Vi
approaching unity, or for radiation. The search for a r¢a Y
adequate electrodynamics that includes the empinc
successes of the Weber and Maxwell theories without the¥
limitations and failures must continue.(!? '

The association of inertial mass with kinetic energy
yielding the extension of the inertial force from ma .to
d(myv)/dt, is not limited to slowly varying effects, to relatiV
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ity, or to v¥/c? << 1. However, the theory has still not been-

adequately empirically confirmed quantitatively. The kinetic

energy of a particle, such as an electron, needs to be mea-
sured accurately as a function of its time-of-flight velocity, a-
functional relationship that is independent of any question-

able electrodynamics. This all-important experiment should
be easily performed using one of the large particle accelera-
tors currently available. =~ - e
The mass equivalent of the total internal energy of a closed
system has been used to derive the Bethe-Weizsidcker mass
formula for the masses of the elements using a Lennard-
Jones nucleon-nucleon potential.!) In this case a mass

“equivalent is identified with plus the potential energy, M’ =

+ U/cz,. which would seem to conflict with the negative sign
used in (1) above. The situations are, however, quite differ-
ent. The inertial mass equivalent in (1) is a small second-order
correction. For example, in (7) the total energy involves the
usual kinetic and potential energies minus the correction as
a small decrease in the kinetic energy - (Uy/c?)V?/2. The mass
equivalent of the total energy M’ = E/c? would thus include
this small negative second-order correction as
- [Uy/c®)V?2]/c?, which varies as 1/c*.

Received 3 August 2000.

Résumé

Pour représenter une masse inertielle équivalente d 'énergie de Coulomb, M = ~Uy/, lavitesse avec
laquelle U, diminue, quand une charge q recule d'une charge q' fixe, est égale au taux
d'augmentation de l'énergie cinétique, dUy/dt = -V - df(m -~ U,/c®)V]/dt, otk m est la masse
matérielle de q. Intégré, 'énergie totale est E = m(1 - (1 -V*IE)'%) + Uy(1 - Vo/c* V2 U, +
(m - U,/C})V?/2. La portion U = (qq'/R)(1 - V*/2C°) est le potentiel dépendant de In vitesse de
Weber. La masse nette d’un électron, m, - eV/c, dans un champ de potentiel uniforme {, a été
mesuré en fonction de ¢. Pour appliquer la théorie de Weber & la gravitation, -Gmm' remplagant
qq', les masses éloignées dans l'univers rendent F = (m &)P)a = -(U/)a s’afcorde avec le
principe de Mach et la masse inertielle équivalente & I'énergie potentielle. Pour associer I:ZE masse
inertielle avec I'énergie cinétique K, donne une néomécanique, ou K = Eme1)1 ) - 1).
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