$$
\text { AD-AOO9 } 208
$$

A CALCULATIONAL MODEL FOR HIGH ALTITUDE EMP

Louis W. Seiler, Jr.
Air Force Institute of Technology Wright-Patterson Air Force Base, Ohio

March 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Abstract

An electromagnetic pulse (EMP) model is developed which allows a quick computation of the time development of the electric fields qenerated by a high altitude nuclear burst. The model is based on the Karzas-L.stter high frequency approximation for high altitude EMP, which describes fields generated by Compton electrons interacting with the earth's magnetic field. The proper choice of a gamma time output function, which can be integrated in closed form, and a small angle approximation, made in the expressions for the Compton currents and afr conductivity, eliminate the time consuming numerical integrations usually necessary in EMP models to comple the Compton currents and air conductivity. This results in a considerabic savings in computation time. The model is presented in a manner which is simple to use but still al lows the vari ion of the major theoretical parameters in the problem. A. simplified model of electron collision frequency as a function of electric field strength is given which enables the model to predict accurate results for nuclear weapon gamma yields up to at least 100 Kt . The results predicted by this EMP model compare to within 5.5% with results from the Air Force Weapons Laboratory CHEMP computer code.

The computation time using the presented model on a CDC 6600 computer is typically 5 sec or less for a 5 shake computation period in steps of .1 shake.

The model presented shouid be useful for both classroom instruction and nuclear vulnerability/survivability studies and analysis problems.

11. Theory

Gycrview
Since the solution to the EMP problen is actually the solution of a classical electronagnetic theory probicm, the derivation of the model equations reduces to putting Haxwell's equations into a convenient form. This is essentially accomplished by expressing llaxwell's equations in spherical coordinates and transforming to a retarded time frame. One must also develop expressions for the currents and conductivities of the system in the absorption region. The general equations disuribing the high altitude madel of Karzas and latter have been derived in great detail by Chapman (Ref 3). Only the major points of the derivation will be given here. The system origin is assumed to be at the burst point with detenation at time $t=0$. This geometry is illustrated in fig. 1.

The key points to be remembered in this model are:

1. Each gamma say gives rise to one downward traveling Compton electron.
2. The electrons are turned by the earth's magnetic field giving rise to a centrifugal acceleration.
3. The relativistic electrons radiate energ̣ in their forward direction.
4. The gamma rays and the EMP radiation travel at the same speed. This leads to constructive interference of the radiation fron each of the electrons.

Particle Densities

The gamma rays from se nuclear weapon travel in a straight line to a point where they produce Compton electrons. At any given point r

GEP/PB/75-13
t'se number of gamas which inceract to produce Compton electrons is

$$
\begin{equation*}
g(r)=\frac{Y}{\xi} \frac{\exp \left[-\left[\frac{r}{i}\left(r^{\circ}\right)\right.\right.}{4 \pi r^{2} \lambda(r)} \tag{1}
\end{equation*}
$$

where $\lambda(r)$ is the mean free path of ganima rays to produce Compton electrons, Y is the gama yield of the weapon in electron volts iev), and E is the mean gama energy in eV .

Equation (1) may also be called the radial distribution function, or an attenuation function for interacting gamm rays. The $\frac{Y}{E}$ term is the total number of gama rays available from the weapon. The $4 a r^{2}$ term accounts for the divergence of the gamma rays as the radias r is increased while the renaining terms account for the reduction in gamas due to thir absorption in the atmosphere, based on the mean free path.

It is assumed that the gama mean free fath varies as the exponential atmosphere. This gives the functional relationship between λ and r:

$$
\begin{equation*}
\lambda(r)=\lambda_{0} \exp [(H O B-r \cos A), \text { is } \tag{2}
\end{equation*}
$$

where
$\lambda_{0}=$ gamma mean free poth at standard pressure
$H O E=$ height of burst in km above the carth's surface
$r=$ radial distance from the burst doint to the noint of interest
$A=$ angle between the position vector \vec{r} and the vertizal
S = atmospheric scale height
With this assumption, Eq (1) can be integrated and iecomes
$g(r)=\frac{Y}{E} \frac{1}{4 \pi r^{2} \lambda(r)} \exp \left\{-\frac{S}{\lambda_{0} \cos A} \exp \left(-\frac{H O B}{S}\right)\left[\exp \left(\frac{r \cos A}{S}\right)-1\right]\right\}$

Mod if $\mathrm{f}(\mathrm{t})$ is the time distribution function of the weapon yield, the rate of Compton electrons, n_{c}, produced at a given doint r and time t is given by

$$
\begin{equation*}
\frac{d n_{c}}{d t}=g(r) f\left(t-\frac{r}{c}\right) \tag{4}
\end{equation*}
$$

Each Compton electron produces through inelastic scattering events several secondary electrons which forn the basis for the conductivity of the atmo:'ere. As in the karzas-Latter approach, each Compton electron is assumed to have a constant speed, V_{0}, throughout the ranne, R, of the electron which is a function of altitude. This allows the lifetime to be expressed as R / N_{0}. If each Compton electron produces secondary electrons at a constant rate, the rate of secondary electron, n_{5}, production is

$$
\begin{equation*}
\frac{d n_{s}}{d t}=\frac{E_{c} / 33 e V}{R / N_{0}} n_{c} \tag{5}
\end{equation*}
$$

where E_{c} is the energy of the Compton electron and 33 eV is the average ionization energy per air molecule (Ref 2).

Considering the differential current produced by the Compton electrons, it can be shown (Ref 3) that the Compton current and the number of Compton electrons are given by

$$
\begin{array}{r}
J c(\tau)=-e g(r) \int_{0}^{R / V_{0}} V\left(\tau^{*}\right) f\left(\tau-\tau^{*}+\frac{X\left(\tau^{-}\right)}{c}\right) d \tau^{*} \\
n_{c}(\tau)=g(r) \int_{0}^{R / V_{0}} f\left(\tau-\tau^{+}+\frac{X\left(\tau^{-}\right)}{c}\right) d \tau^{*} \tag{7}
\end{array}
$$

REP/PH;75-13
where
$T=t-\frac{r}{c}$
5° - the time since the creation of the Compton electron $X\left(r^{-}\right)$a the radial distance the Compton electron has traveled $e=$ the magnitude of the electron charge

The quantity r is generally known as retarded time.
It then follows from Eqs (4) and (7) that the number of secondary electrons is

$$
\begin{equation*}
n_{g}(\tau)=\frac{q V_{0}}{R} g(r) \int_{-\infty}^{\tau}\left[\int_{0}^{R / N_{0}} f\left(\tau^{-}-\tau^{\cdots}+\frac{X\left(\tau^{-\rho}\right)}{c}\right) d \tau^{\cdots}\right] d \tau^{\cdots} \tag{8}
\end{equation*}
$$

where q is $E_{c} / 33 \mathrm{eV}$.

Currerits and Corductivity

In the Karzas-Latter theory, the speed of the Compton electrons is considered to be a constant, however, there is an acceleration due to the geomagnetic ficld. The general equation of motion for an electron in this case is

$$
\begin{equation*}
\frac{d}{d t} m \vec{V}=-e(\vec{E}+\vec{V} \times \vec{B})-m v_{c} \vec{V} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
m & =\text { the electron rest mass } \\
\vec{v} & =\text { the electron velocity } \\
\vec{E} & =\text { the electric field } \\
\vec{B} & =\text { the magnetic ficld } \\
v_{c} & =\text { the electron collision frequency } \\
\gamma & =\left(1-\left(v_{0} ; c\right)^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

GEP/PH/75-13

If the relativistic motion of the electron is considered, only the $V A E$ term is imortant and in soberical coordinates, the expressions for the velocity components become (Ref 3)

$$
\begin{align*}
& V_{r}=V_{0}\left(\sin ^{2} 9 \cos \omega \tau+\cos ^{2} \theta\right) \tag{10}\\
& V_{\theta}=V_{0}(\cos 2 \sin e \cos \omega \tau-\sin \theta \cos \theta) \tag{11}\\
& V_{\theta}=V_{0}(\sin 9 \sin \omega \tau) \tag{12}
\end{align*}
$$

where w i- the eyclotron frequency for an clectron and is given by

$$
\begin{equation*}
\omega=\frac{e B_{0}}{m \gamma} \tag{13}
\end{equation*}
$$

with B_{0} the magnitude of the geomagnetic field.
From $E_{q}(10), X\left(T^{\prime}\right)$ is found to be

$$
\begin{equation*}
X\left(T^{-}\right)=V_{0}\left(\sin ^{2} \theta \frac{\sin \omega \tau^{2}}{\omega}+T^{-} \cos ^{2} \theta\right) \tag{14}
\end{equation*}
$$

The Compton currents may now be written as

$$
\begin{align*}
& J_{r}^{c}(\tau)=-c g(r) V_{0} \int_{0}^{R / V_{0}}\left[f(\tau)\left(\cos ^{2} \theta+\sin ^{2} \theta \cos \omega \tau\right)\right] d \tau^{\prime} \tag{15}\\
& J_{\theta}^{c}(\tau)=-e g(r) V_{0} \int_{0}^{R / N_{0}}\left[f(\tau) \sin \theta \cos \theta\left(\cos \omega \tau^{2}-1\right)\right] d \tau^{\prime} \tag{16}\\
& J_{\theta}^{c}(\tau)=-e g(r) V_{0} \int_{0}^{R / N_{0}}\left[f(\tau) \sin \theta \sin \omega r^{\prime}\right] d \tau^{*} \tag{17}
\end{align*}
$$

where

C.P/PH/75-13

$$
\begin{equation*}
T=\tau-\left(1-\frac{V_{0}}{c} \cos ^{2} \theta\right) T^{2}+\frac{V_{0}}{c} \sin ^{2} \theta \frac{\sin \omega T^{\prime}}{\omega} \tag{18}
\end{equation*}
$$

In a sinilar manner Eq (8) becomes

$$
\begin{equation*}
n_{s}(\tau)=\frac{q V_{0}}{R} g(r) \int_{-\infty}^{\tau}\left[\int_{0}^{R_{1} / V_{0}} f\left(T^{-}\right) d \tau^{\cdots}\right] d \tau^{-} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{\prime}=r^{-}-\left(1-\frac{V_{0}}{c} \cos ^{2} \theta\right) T^{\cdots}+\frac{V_{0}}{c} \sin ^{2} \theta \frac{\sin \omega r^{\cdots}}{\omega} \tag{20}
\end{equation*}
$$

Equations (15), (16), (17), (18), and (20) may be simplified if the factor wr is assumed to be small. In this case a Taylor series expansion for the \sin and \cos of $\omega \tau$, including only first and second order terms, is

$$
\begin{align*}
& \sin \omega \tau=\omega \tau \tag{21}\\
& \cos \omega \tau=1-\frac{\omega^{2} \tau^{2}}{2} \tag{22}
\end{align*}
$$

The expressions for the Compton currents now become

$$
\begin{equation*}
j_{r}^{c}(\tau)=-e g(r) V_{0}\left[\int_{0}^{R / V_{0}} f(T) d \tau^{-}-\sin ^{2} \theta \frac{\omega^{2}}{2} \int_{0}^{R / V_{0}} \tau^{-2} f(T) d t^{-}\right] \tag{23}
\end{equation*}
$$

$J_{\theta}^{c}(\tau)=e q(r) V_{\theta} \sin \theta \cos \theta \frac{\omega^{2}}{2} \int_{0}^{R / V_{O}} \tau^{-2} f(T) d \tau^{-}$
$J_{\rho}^{c}(\tau)=-e g(r) V_{0} \sin \theta \omega \int_{0}^{R / N_{0}} \tau-f(T) d \tau^{\circ}$

$$
\begin{equation*}
T=T-(1-\beta) T^{+} \tag{26}
\end{equation*}
$$

where $\mathfrak{b}=\frac{V_{0}}{c}$.

In a like manner Eq (20) becomes

$$
\begin{equation*}
T^{+}=T^{+}-(1-\beta) T^{C} \tag{27}
\end{equation*}
$$

An expression for the conductivity may alse be found by using the equation of sotion for the secondary electrons. These electrons are in the thermal regions with energies ranging from about $10-15 \mathrm{eV}$ to the amoient cnergy. It should be remembered for later use that the ambient energy of the secondary electrons is dependent on the electric field present. For consideration here, it is assumed that $\gamma \neq 1$ and also that the change of velocity with time is smail compared to the other terms in En (9) so that $\frac{d \vec{V}}{d t}$ may be neglected. Also, with low velocities, the $\vec{V} \times \overrightarrow{\hat{\delta}}$ term is small compared to the remaining terms and may also be neglected. Then the velocity of the secondary electrons is

$$
\begin{equation*}
\vec{v}=-\frac{e}{m v_{c}} E \tag{28}
\end{equation*}
$$

Using Eq (28), the current due to the secondary electrons is

$$
\begin{equation*}
\vec{j} S(\tau)=-e \vec{V} n_{s}(\tau)=\frac{e^{2}}{\pi v_{c}} \vec{E} n_{S}(r) \tag{29}
\end{equation*}
$$

Comparing $\varepsilon_{q}(29)$ to $\vec{J}^{s}=\sigma \vec{E}$, an expression for the conductivity is

$$
\begin{equation*}
\sigma(\tau)=\frac{\mathrm{e}^{2}}{m v_{c}} n_{s}(\tau) \tag{30}
\end{equation*}
$$

Equations (19), (23), (24), (25), (26), (27), and (30) provide the desired expressions for the Compton eurrents and the conductivity.

GEP/PH/75-13
 Field Equations

Maxwe!!'s equations is rationalized MKS units are

$$
\begin{align*}
& \vec{V} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{31}\\
& \vec{\nabla} \times \vec{B}=u_{0} \vec{J}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \tag{32}\\
& \vec{\nabla} \cdot \vec{E}=q_{v} \tag{33}\\
& \varepsilon_{0}
\end{align*}
$$

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \tag{34}
\end{equation*}
$$

where q_{v} is the total charge density and \vec{J} is the total current density. In addition to these equations the continuity of charge requires that

$$
\begin{equation*}
\frac{\partial c v}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0 \tag{35}
\end{equation*}
$$

Combining shese equations to separate \vec{E} and \vec{B} and transforming them into spherical coordinates and into the retarded time frame (Ref 3) the relations for \vec{E} and \vec{B} become

$$
\begin{align*}
-\nabla^{2} \vec{E} & +\vec{u}_{r} \frac{1}{c \varepsilon_{0}} \vec{\nabla} \cdot \vec{J}+\frac{1}{\varepsilon_{0}} \vec{\nabla}_{q_{v}} \tag{36}\\
& \left.+\frac{\partial}{\partial \tau}-\frac{2}{c} \frac{\jmath}{r} \frac{\partial}{\partial r}(r \vec{E})+\mu_{0}\left(\vec{\jmath}-\vec{u}_{r} J_{r}\right)\right]=0 \\
& -\nabla^{2} \vec{\theta}-\mu_{0} \vec{\nabla} \times \vec{J}+\frac{\partial}{\partial \tau}\left[\frac{2}{r c} \frac{\partial}{3 r}(r \vec{B})\right. \\
& \left.+\frac{\mu_{0}}{c}\left(\hat{u}_{\theta} J_{\theta}-\hat{u}_{\theta} J_{\theta}\right)\right]=0 \tag{37}
\end{align*}
$$

In the Karzas-Latter model, only the time derivative portion of Eqs (36) and (37) are kept since the current variation with distance is slow compared to the variation in tine for the high frequency com-

GEP/PH/75-13

ponents. Also the fields and currents vary rapidly in time. This approximation is valid fer about 100 shates. Th s same hioh freouency androximation is used here. In addition, the radial component of the field is dropped since it is weal. compared to the transverse components and contributes only a very low frequency signol (Ref 2). The equations for the transverse comonents are

$$
\begin{align*}
& \frac{\partial}{\partial \tau}\left[\frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r E_{\theta, \phi}\right)+\mu_{\theta} J_{\theta, \theta}\right]=0 \tag{3.8}\\
& \frac{\partial}{\partial \tau}\left[\frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r \theta_{\theta}\right)-\frac{\mu_{0}}{c} J_{\theta}\right]=0 \tag{39}\\
& \frac{\partial}{\partial \tau}\left[\frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)+\frac{\mu_{0}}{c} J_{\theta}\right]=0 \tag{40}
\end{align*}
$$

The currents in Eqs (38). (39), and (40) are total currents. The total currents are given by

$$
\begin{equation*}
J_{\theta, \ell}=J_{\theta, \eta}^{c}+\sigma(\tau) \varepsilon_{\theta, t} \tag{41}
\end{equation*}
$$

Substitution of Eq (41) into Eas (32), (39), and (40) and intenration over time gives

$$
\begin{align*}
& \frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r E_{\theta}\right)+\mu_{\theta} J_{\theta}^{c}+\mu_{0} \sigma(r) E_{\theta}=0 \tag{42}\\
& \frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r E_{\theta}\right)+\mu_{\theta} J_{\theta}^{c}+\mu_{0} \sigma(\tau) E_{\theta}=0 \tag{43}\\
& \frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)-\frac{\mu_{0}}{c} J_{\theta}^{c}-\frac{\mu_{0}}{c} \sigma(r) E_{\theta}=0 \tag{44}\\
& \frac{2}{c} \frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)+\frac{\mu_{0}}{c} j_{\theta}^{c}+\frac{\mu_{0}}{c} \sigma(r) E_{\theta}=0 \tag{45}
\end{align*}
$$

GEP/FH/75-13

Equations (42) and (43) are in a forn which can be solved. The terme needed for solution of these eguations are the air conductivity and the transverse components of the Compton currents. The air conductivity may be found by using Eqs (19) and (30). The transverse commonents of the Compton currents may be found by using 5 qs (24) and (25).

Fig. 2. Typical Lona fiamia Nutdut Pulse

Fiq. 3. Tyoical Narrow fiama gutnut Pulse

IV．Results

To test the validity of the hiemp nodel，the comoued values of this model were compared to available equivalent nodel values from the AFWL code for EMP calculations hnowr as CHEMP（Ref 4）．

The basic set of conditions used for these calculations was：

target location	$=$ nround zero
height of burst	$=100 \mathrm{Km}$
geonagnetic field	$=.3$ nauss or $3(10)^{-5} \mathrm{wb} / \mathrm{m}^{2}$
inclination angle	$=0.6$ degree

Compten electron recoil eneray $=.75 \mathrm{MeV}$
The nama yield was vi ied and the number of steps taken for the numerical integration was varied according to the gama yield，with more steps taken for the higher yields．Other parameters varied for examination of peak field values were burst height，geomagnetic fielo， and pulse shape．A preionization level was also considered．

The available data fron the CHENP（i）code，which is CHEMP run with non－self－consistent calculations，was computed using a pulse of the form of Eq（46）with $\alpha=10^{-9}$ and $s=10^{7}$ and the same gemetry as given above．This pulse shave is almost identical to that of Eq（48） with $a=10^{7}$ and $s=3.7(10)^{8}$ ．See Fig． 2 on Dage 18 ．Using this pulse shape，a range of gama yields from． 01 Kt to 100 Kt was used to calculate the $E M P$ field values．The peak field values are plotted in Fig．4．The values taken from the CHEMP (N) code are annotated by X marks．These peah fiels valucs stion a maximum difference of 5.5% around the 1 Kt case，and a differance of less than 2% for all other known cases．

Fig. 6. Pcak Electric Field as a Function of Burst Height

Fig. 7. Peak Elcetric Fieids for Tin Gama Pulse Shapes

Fig. 3. Effect of a 03 Kt Gamma Yleld Precursor Eurst

Fig. 9. Effect of Gcomanetic Field Streagth on Peak Fields

Bislingranhy

1．Kinsley，0．v．Introuction to the Electronnongic Pulse，Uright－ Patterson AFE：Air＇orce Institutr of Tecmology，March 1971. （GIE／PH／71－4）．

2．Karzas，K．J．and R．Latter．＇Detection of the Electronannetic Radiation from Huclear Explosions in Scace＂，Physical Review． 137－58－1369－1372（tharch 8，1965）．

3．Chapman，T．C．A Cemnuter Code for Hinh Altitude EMP，Uright－ Patterson AFB：Air force Institute of Tecinolcay，Jinuary 1974. （Gにえ゙／アH／74－1）．

4．Canavan，G．H．，J．E．Brau，L．A．Wittwer．Sensitivity of Self－Con－ sistent Hinn Altitude Electromanetic Puice Calculations to ？re－ ionization and fonrcved Source anc loniz三sion rodels．AFhL EMP Theorctical lote 50. Kirtland AFE：Air force leapons Laboratory， October 1973.

5．Pomranning，G．C．Earlv Time sir Fireball Hodel for a liear－Surface Burst ${ }^{\text {，}}$ ，DitA 30297，Barch 1973.

6．Evans，R．o．The Atciic lucleus，New York：HeGraw Hill Eook Co． 1966.

7．Katz，L．and A．S．Penfold．＇Rance－Energv Relations for Elec：rons and the Retermination of Beta－Fav Endrooint Eneraies by Absorption＇， Reviews of lodern Fhvsics，24－1：29－44（January 1952）．

8．Latter，R．and R．E．L．elevier．＂Yetection of Ionization Effects from luclear Exolosions in Space＂，Journil of Feonhysical Research， 68－6（March 15，1963）

9．Air force Weanons Latoratory．CHEqE：：－ade for calculation of Bigh－iltitude EAP．AF：／L Technicai Reoort $74-4$ ．Kirtiond AFB： AFIN，July 1974 ．

10．Baum，C．E．Electron Thermitization and ：ohility in Air．AFYL EMP
 pons Laboratory，July 1965.

11．U．S．Standard Atrosphere，1052．Wastington DC：U．S．Government Printing office．becember 1962.

12．Carnahan，E．，I．A．Luther，J．0．Wilhes．Anolied Mumerical Methods， New York：John Wiley $\&$ Sons，Inc． 1969.

