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The Miehelson-Morley result is described empirically by generalized Doppler 
equations. I f  the phase o f  a light wave is not invariant, in agreement with the 
quantum nature o f  light, speciaLretativistie kinematics need not be assumed. 
Einstein particle dynamics and Maxwell-Lorentz eleetrodynamics in a moving 
system are derived without assuming special-relativistic kinematics. An alter- 
native explanation for the decay rate of  moving radioactive particles is present- 
ed. The observation of  a third-order Doppler effect may yield the velocity o f  
the closed laboratory. 

1. INTRODUCTION 

The Lorentz symmetry of special relativity m provides a powerful analytical 
tool for modern theoretical physics. Yet it seems to lead to inconsistencies 
and paradoxes when applied to spacetime. (2-8) Moreover, observations and 
experiments have been interpreted as supporting "absolute" rather then 
"relativistic" spacetime. ~-~*) It therefore becomes of interest to explore the 
possibility of preserving Lorentz symmetry for dynamical quantities, such 
as momentum, energy, and force, i.e., Einstein dynamics, while leaving the 
choice of kinematics open. 

2. EMPIRICAL DESCRIPTION OF THE MICHELSON-MORLEY 
RESULT 

The Michelson-Morley result a4-18) shows that a standing wave pattern 
for light remains invariant to its orientation on the moving earth. The phase 
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velocity (but not necessarily the oneway chopped time-of-flight velocity) of 
light must be determined to fit this result. From the definition of phase 
velocity e the function c2k  2 - -  oJ 2, where k is the propagation constant and 
~o the angular frequency, is an invariant. In particular, 

c'~k'~ _ o~'2 = c2k ~ - -  ej~ (1) 

where unprimed quantities refer to a massive system at rest and primed 
quantities refer to the massive system when moving with the velocity v. 
By linearizing Eq. (1) symmetrically and by assuming that components of 
ck transverse to v remain unchanged, we obtain a Lorentz symmetric 
comparison 

c ' k f f  = c) , (k~ - -  oJv/c2), c ' k u '  = ck~  
(2) 

c 'k~ '  = ck~ , o ;  = ~(~o - -  k~v )  

where 

r = ( 1  - v 2 / c g - l n  (3) 

where the x axis is in the direction of v. 
This result, Eqs. (2) and (3), implies a phase velocity given by 

= - v), = f ( v ) c d 7  (4) 

where f ( v )  is any arbitrary function of the velocity v, since c' and k' cannot 
be simultaneously and independently specified. This result (4) may be 
readily shown to satisfy the Michelson-Morley result for any f ( v ) .  If  the 
phase velocity c ' =  c, as in special relativity, then f ( v ) =  ( 1 -  c~v/c2) -1.  

If  the phase velocity magnitude has the classical value c' = c(1 -- c~v/c2),  

then f ( v )  = 1. The discussion that follows is independent of any particular 
choice off (v)  or c'. 

Equations (2) may be interpreted as generalized Doppler equations 
which represent an empirical description of the Michelson-Morley result. 
They represent the Einstein-Doppler relations for the special case c' = c. 

3. THE PHASE OF A LIGHT WAVE IS NOT INVARIANT 

According to the classical wave theory of light the propagation constant 
k and the frequency o~ are pure kinematical properties and the phase of a 
wave k - r -  o~t is an invariant. According to the quantum mechanical 
nature of light the propagation constant k and the frequency co are essentially 
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dynamic properties given by the de Broglie wavelength and the Panck- 
Einstein frequency condition; thus, 

k = p / ~ ,  co = E / h  (5)  

where h = 2zrh is Planck's constant and p is the momentum and E the energy 
of a photon. In a moving system Eqs. (5) are generalized to 

c ' k ' / c  = p ' / h ,  co' : E ' / h  (6) 

The k and co that will be observed in general must be determined from 
quantum theory and dynamical considerations. In general k and co cannot 
be derived using classical wave theory and pure kinematical considerations. 
For example, a large molecule will see absorbed light as having a higher 
frequency than a small molecule, the recoil energy of the large molecule 
being less than the recoil energy of the small molecule [Eq. (18) below]. 
Classically the frequency would have to remain the same independent of the 
mass of the molecule. The quantum mechanical method of determining 
k and co dynamically does not generally preserve the phase of a light wave. 
The classical invariance of the phase may therefore be abandoned; or, 

(c'k'/c) "r' -- co ' t '  4= k .  r - -  cot (7) 

If the classical invariance of the phase were to be assumed, then Eqs. (2) 
for c '  = e,  when interpreted as a passive transformation of the point of view, 
would lead to special-relativistic kinematics. But when Eq, (7) is assumed, 
Galilean kinematics, or other possible choices for the kinematics, may be 
considered. 

4. INTERPRETATION OF THE GENERALIZED D O P P L E R  
E Q U A T I O N S  

Since Eqs. (2) do not represent the classical Doppler effect and if special- 
relativistic kinematics is not assumed, then Eqs. (2) must represent in part 
a dynamical interaction of the observer with the wave being observed. The 
state of motion of the massive observer alters the wave physically, which 
then helps to determine what is observed. The active role of the observer 
in the measuring process is already familiar in quantum theory; and light is 
a quantum mechanical phenomenon. 

With this dynamical interpretation the generalized Doppler equations (2) 
do not represent a transformation between the points of view of two passive 
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observers of a single physical process or event. Instead, Eqs. (2) compare 
two different physical processes or events, one where a stationary observer 
actively affects that which is observed, and the other where a moving observer 
actively affects differently that which is observed. 

This physical interpretation may also be applied to other dynamical 
quantities exhibiting the same Lorentz symmetric comparisons as Eqs. (2). 

5. EINSTEIN D~2~AMICS FOR A PARTICLE OF A FII'~TE M A S S  

Substituting Eqs. (5) and (6) into (2) yields the comparison 

p~ '  = r ( p ~  - Ev /c2) ,  p~" = p~ 
(8) 

p~' =p~ ,  E ' =  ~,(E-p~v) 

where primes denote quantifies observed in the massive, moving system. 
It is now postulated that Eqs. (8) are also valid for particles of a finite mass. 
As discussed above, these Eqs. (8) do not represent a transformation. 

To obtain the dynamics that Eqs. (8) imply, the special case when the 
momentum of the particle is zero in the massive, moving system, p' = 0, 
may be considered. In this case Eqs. (8) reduce to 

p~ = v E / c  ~, p~ = p ,  : O, E '  = 9 , (E - - p ~ v )  (9) 

where E'  cannot be zero. Imposing the additional condition that the 
momentum reduce to the Newtonian expression for small velocities, we 
obtain from Eqs. (9) 

E '  : m e  z, p = m T v ,  E = m y c  2 (t0) 

where rn is the mass of the particle and ~ is given by Eq. (3). Equations (10) 
are the usual equations for Einstein dynamics for a particle of finite mass. 
This derivation does not require special-relativistic kinematics. 

6. ELECTRODYNAMICS IN A MOVING SYSTEM 

Since a light wave is seen in a massive, moving system as well as in a 
massive, stationary system, the wave equation, and consequently Maxwell's 
equations, may be assumed to be of the same form in a massive, moving 
system as in a massive, stationary system. The homogeneous Maxwell 
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equations in Gaussian form (I91 for a plane wave solution may be written 
in the form 

ck × E - -  o~B ..... 0, c k - B = O  
( l l )  

ck × H - i - c u D = O ,  c k ' D = O  

Substituting Eqs. (2) into (1 1) and preserving the form of Maxwell's equations 
yields 

E U' = E u , BEI' := BII , Dif' = D:, , Hll' = Hl~ 

E±' = 7(E± ~- v × B/c), B~' = 7(B~ ~- v x E/c) (12) 

D L' = 7(D± + v X Hie), n± '  -- 7 (H :  -- v x D/c) 

where primes refer to fields observed in the moving system, and the subscript 
i[ refers to components parallel to v and _1_ to components perpendicular to v. 
Since Eqs. (12) do not involve either ck or co, they may be regarded as 
generally valid comparisons for all solutions to Maxwell's equations. 

Introducing sources into Maxwell's equations and using Eqs. (12) 
yields by symmetry 

J~' = 7(J~ - -  p,:), & '  = & 
( t3)  

J /  = Jo ,  P' = 7(P - J~v /d )  

where J and p are the electric current and charge densities. The force in the 
massive, moving system is then the Lorentz force, 

F' -~ p'E' -4- J' X B'/c (14) 

These results, Eqs. (12)-(14), do not represent a transformation of  the 
passive point of  view, as discussed in Section 4. Special-relativistic kinematics 
was not used for the derivation of these results. 

7. THE HALF-LIFE OF MOVING RADIOACTIVE PARTICLES 

The half-life r '  of  moving radioactive particles is increased according 
to the formula (2°-2~) 

r '  = 77 (15) 

where -r is the half-life for stationary particles and 7 is given by Eq. (3). 
This result is frequently interpreted as a speciaI-relativistic time dilation. 
Conventional relativistic quantum theory provides another interpretation/TM 
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The probability density for a free particle is chosen proportional to mc2/E --  
1/~,, which means that the probability of decay is also proportional to 1/~,, 
in agreement with Eq. (15). The normalizing factor mc~/E = I/~, arises due 
to the Lorentz contraction of the proper element of volume in the normalizing 
integral. Conventional relativistic quantum theory thus explains the effect 
as essentially a Lorentz contraction. The space interval in which the particle 
can be found decreases with its velocity as 1/~. 

The present theory, seeking alternatives to special-relativistic kinematics, 
does not accept these interpretations. If Galilean kinematics is assumed, the 
following interpretation is possible: The probability of decay is proportional 
to the statistical weight of the final state, which is proportional to the volume 
of phase space available for the free daughter particles. The volume element 
of momentum space in the center-of-mass system as compared with that 
in the stationary system may be obtained by taking differentials of Eqs. (8) 
for E' constant, which yields 

@2 @.' @; = @~@~ @.I7 (16) 

Using Galilean kinematics, the element of volume in configuration space is 
found to remain the same, dx' dy' d z ' =  dx dy dz; so that the volume of 
phase space which is available for the daughter particles is statistically less 
by the factor 1/),; and the result (15) follows. 

8. THE GENERAL DOPPLER EFFECT 

The Doppler effect for a moving source of mass Ms and velocity vs and 
a massive, stationary observer may be obtained by considering the emission 
of a single photon of angular frequency co. Considering conservation of 
momentum and energy and using Eqs. (5) and (10), we obtain the result 

co = co0(1 -- hcoo/2Msc2)/), s(1 --  vs " e/c ~) (17) 

where co o is the frequency for an infinitely massive stationary source and 
Vs is given by Eq. (3) with vs replacing v. The Doppler effect for a moving 
observer of mass 340 and velocity v0 and a massive stationary source may be 
similarly obtained by considering the absorption of a single photon of 
frequency co, yielding 

co'tK = - -  I + [1 + 2 c o y o ( 1  - -  V o "  e/c=)fKp/~ (18) 

where co' is the frequency of the absorbed light, )'o is given by Eq. (3) with 
Vo replacing v, and K - ~  Moc2/h. 
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The general Doppler effect when both source and observer are in 
motion may be obtained by substituting Eq. (17) for co into (18). The case 
when both the source and observer are massive may then be obtained by 
letting M~ ~ ov and Mo-+ 0% yielding 

w' = w0),0(1 -- v0" elc2)I), ~(1 - -  vs " elc 2) (19) 

These results, Eqs. (17)-(19), have been derived without having to 
assume special-relativistic kinematics. It is therefore possible to consider 
Galilean kinematics and the possible influence of the velocity of the closed 
laboratory on the general Doppler effect. The laboratory velocity V may be 
introduced by letting 

v~ : V + u s ,  v o : V - k  Uo (20 )  

where u~ and u0 are velocities of the source and observer relative to the 
laboratory. Laboratory coordinates may be chosen so that the x y  plane is 
defined by V and e (the phase velocity of light in the zero-velocity frame). 
The y axis is taken in the direction of the phase velocity in the laboratory. 
Introducing Eqs. (20) into (19) and expanding to third powers in (velocity/c) 
yields 

eo'/eo o = 1 + A~ + A~ + A~ + O{(ve loc i ty /c )  ~} (21) 

where the A's are defined by 

- -  - -  g - -  2 cA1 = u~j Uo~ , 2c2A~ = (us~ Uo~) 2 + uo~ u ~  

2caAa = ( u ~  - -  uou)(u~ - -  u ~  -k  uo 2) -~ 2V~(us,~u~ - -  Uo~Uou) 

- -  2V, u(usy - -  uo,j) z q- V~U(u.~u - -  uo~) 
(22) 

The laboratory velocity V does not appear in the first- and second-order 
terms in Eqs. (21) and (22), and these terms are sufficient to predict the 
various Doppler-effect experiments that have been performed to date. 

In an attempt to observe the velocity of the closed laboratory, 
Champeney and Moon (~,2a) rotated a rod with a M~Sssbauer source on one 
end and an absorber on the other end and kept a record of the gamma-ray 
counts as a function of the time of day and year. No variations were detected. 
This agrees with the present theory, where no variations should be expected 
to second order; although with greater care the third order term varying as 
2Vx  Vu(u~x - -  uo~) might be detectable. 
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9. PROPOSAL TO DETECT THE CLOSED LABORATORY VELOCITY 

The velocity of  the closed laboratory V may be detected by going to an 
appropriate third-order Doppler effect. If  a M/Sssbauer source is placed at 
the center of a rotating rod and an absorber at the end, Eqs. (21) and (22) 
yield to third order 

~o'/w o = 1 + u~,/2c ~ - -  uo~V ~ cos ~ q~ sin(2g2t)/2c 3 (23) 

where 22 is the angular velocity of the rod, ~ is the angle between the plane 
of  rotation of  the rod and V, and u0~ is the tangential velocity of  rotation of  
the absorber. The term involving V may be singled out by amplifying the 
audio frequency 2~. Mechanical vibrations of  this frequency may also arise; 
but the desired effect varies through a maximum twice daily, since ~ : ~(t), 
and ordinary vibrations should not be subject to such a regular daily varia- 
tion. I f  V is about 300 km/sec, the amplitude of the effect might be made 
to be of the order of uo~V2/2c 3 ~ 10 -13, which should be detectable. 

A cesium beam clock, where the light is viewed normal to the motion 
of  the atoms, is in principle subject to a daily fractional time variation given 
by the last term in Eq. (22), or by 

zlo~/,.o = v ~ v ~ u . ~ / c  ~ (24) 

If  the velocity u~ of the atoms is about 300 m/sec then the magnitude of the 
effect, Eq. (24), is again about 10 -13 for a laboratory velocity of about 
300 km/sec. If  a cesium beam clock can be made to run with a fractional 
error of this order of magnitude, the effect might be just observable. Un- 
fortunately, a rigidly mounted clock would be subject to extraneous daily 
effects which would probably mask the effect sought. 
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