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APPENDIX A
SUPPLEMENTARY BLAST DATA

- This appendix consists of two sections.
ecuon I is a collection of equations and data
useful in the study of shock waves. Section II
contains a description of certain shock wave
properties in a way that is intended to convey an
understanding of these topics. None of the infor-
mation in this appendix is required to solve the
problems in Chapter 2 concerning blast phenom-
ena or the blast related problems in the chapters
of Part I of this manual. This appendix provides
supplementary information, useful for solving
special problems or for developing a better
physical understanding of the phenomena de-
scribed in Chapter 2.

The shock wave equations presented in
this appendix are those that are most likely to
be encountered in the study of air blast phenom-
ena, and the concepts that are discussed are
those that are most likely to be troublesome to
the person who is studying shock wave theory
for the first time.

§ This appendix presupposes a reasonable
familarity with the laws of mechanics and some
understanding of how these laws apply to energy
and momentum exchange in gases in motion.

SECTION 1

MATHEMATICAL DESCRIPTION
OF THE SHOCK FRONT

Most mathematical descriptions of shock
wave phenomena are focused on the shock front

. itself since shock front conditions are fairly easy

to treat mathematically, but the characteristics
of the waveforms that follow the front are nat.
This limitation is not serious for many types of
calculations, because the strength of the shock
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front is usually the best indicator of the s'ev‘erity

of the entire shock wave. ‘

In the absence of direct, simple mathe-
matical techniques, analysis of the shock ‘wave-
form usually depends on empirical data such as
the predetermined shock waveforms shown in
paragraph 2-12, Chapter 2. Numerical integra-
tion of shock wave problems on a computer pro-
vides an alternate method. The computer codes
for blast waves from nuclear weapons incorpo-
rate the details of weapon configuration, radia-
tion transport, and hydrodynamics; these codes
are complex and their characteristics will not be
discussed here.

A-1  The Rankine-Hugoniot Equations .

A set of three equations governing shock
front behavior may be derived from the laws of
mechanics. These equations (or any set of three
independent equations derived from them) are
called the Rankine-Hugoniot equations. They do
not completely specify shock front behavior; a
fourth equation, the equation of state of the
material, is necessary to specify the complete
behavior of the shock front. However, these
equations have the advantage of being val‘1 for
all conditions under which a shock front ca..
occur. They apply equally well to shock waves
in solids and in gases.

The equations given below outline the
conventional derivation of the Rankine-
Hugoniot equations. The same set of equations
are derived in Section II in a manner that re-
quires less algebra but more physical reasoning.
The three conservation equations that lead to
the Rankine-Hugoniot equations involve the so-
called jump conditions across a shock front. The
parameters involved are illustrated in Figure A-1.
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PRESSURE = P,
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Figure A-1. (U) Change in Air Properties Across a8 Shock Front .

An equation for the conservation of mass
states that the mass of air per unit time overtaken

by a unit area of the shock front is equal to the.

mass of air per unit area per unit time added be-
hind the shock front.

pU = p (U = u),

where p is the ambient air density, U’ is the
shock velocity, P, is the density of the air be-
iunu e siiock front, and u is the peak velocity
of the air behind the shock front.

Newton’s second law states that force is
e 10 the rate of change of momentum. The
force per unit area acting to accelerate the air
entering the shock front is the overpressure, Ap
= Ps - P, where Ps is the absolute pressure behind
the shock front and P is the ambient pressure.
The mass per unit time that enters a unit area of
the shock front is pU. The change of velocity of
the air is u. Thus, '

Ap = P, - P = plu.

Conservation of energy requires that the
work done while the shock front moves through

A-2

a unit mass of air, Ps (V- Vs), must equal the
kinetic energy imparted to the unit mass of air,
u?/2, plus the change in internal energy, E -E,
where. the various symbols are defined in Figure
A-1. Thus,

PAV = w?/2) + (£, - E),

or
P(V - V)= (2 + (£ - E).

Using the relations V = 1/p and V, = l/p_, a
simultaneous solution of these three equations

leads to the Rankine-Hugoniot equations in their

usual form:
E -E=3@® +PV-V)
u= (@, - PV - V),
P, - P\
U= V(V’_ V.) :



A-2 Equation of State of an
Idea! Gas

F A gas that is heated at constant volume
Oes not do external work: therefore, all of the
thennal energy added to the gas is converted to
internal energy. This'amount of energy is

AE = C, AT

where AF is the change in internal energy per
unit mass, C,, is the specific heat of the gas at
constant volume, and A7 is the temperature
change. By definition, the specific heats of an
ideal gas are constant; and the internal energy
per unit mass is

E=C,T

where T is absolute temperature.

Using the thermodynamic identities PV
= , and CP - Cy = R (where CP is specific
heat at constant pressure, and R is the universal
gas constant) the following equation follows:

C PV PV
G -Gy vy -1

E =

wwrhara

s
Cy -

Eliminating the variables £, and E makes it pos-
sible to use the Rankine-Hugoniot equations to
determine the conditions across a shock front in
an ideal gas uniquely.
The significance of the quantity ~ as it
cars in the shock wave equations deserves
some explanation. In thermodynamics, ¥ ap-
nearc most frequently in equations that involve
isentropic compression. For example, vy appears

in the equation for sound speed because sound
wave pressure fluctuations are isentropic. The
presence of v in shock wave equations is some-
times incorrectly interpreted as implying a rela-
tionship between shock wave compression and
isentropic compression; actually, 4 is a con-
venient constant relating energy content of a gas
to pressure and volume. This fact becomes im-
portant in paragraph A-6 where strong shock
waves are discussed. Variations in the value of ¥
must then be considered, and the equations

AE

Cy AT, and

E=C,T

cannot hold simultaneously. Conveniently, ¥ is
redefined, so the equation ‘

AE = C, AT

still may be used. The meaning of y as a spéciﬁc
heat ratio is lost, and vy becomes simply a con-.
stant in the energy equation.

A-3 Shock Wave Equations for an
Ideal Gas (U)

. From the relation for the speed of sound
in ambient air,

¢ = (vP/p)!?
and the equation for overpressure,
Ap = P, - P

the set of shock wave equations shown in Table
A-1 can be derived. The equations in the right
hand column were obtained by assigning to <y
the value 1.4, the value for air at moderate tem-
peratures and pressures.

These ideal gas equations apply to shock
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Table A-1. .Shock Wave Equations for an idea! Gas.

Equations in General Form: Equations for y = 1.4

Velocity of the Shock Front

- ap c 54p
u == U= . c
P 172 7P 12
(1 AR Ap) (1 + 64ap/7P)
2y P

Density Ratio Across the Shock Front

Ps 2y + (v + DApP Ps 7+ 6apP
p 2y + (y - aplP p 7+ 4pP
Dynamic Pressure Behind the Shock Front
S 1 2
by definition, q =?psu
Q, * s S e
s 9P F (v - Dap % T TP ap
Temperature Behind the Shock Front
- _ﬂ:) 2y + (v - DAp/P - ( Ap) 7+ AplP
T, T(]+P 2y + (v + 1)Ap/P Ty TI+P 7 + 6Ap/P
Peak Reflected Overpressure at Normal Incidence
, 7+ 4AE/P
= + =
Ap = 24n + (v + 1y Ap, = 24p T apP
A4



waves in air provided the shock strength. £ = (Ap
+ P)/P = P /P is not too large. Usually these
equations are assumed to hold for shock
strengths of about 10 (132 psi overpressure at
sea level) or less; note that at high altitudes this
limit corresponds to relatively low overpressures,
e.g., about 25 psi at 40,000 ft. The equations for
high pressure shock waves are given in paragraph
A-6.

As shown in Figure A-1, the subscript s
denotes conditions behind the shock front; the
absence of a subscript denotes ambient condi-
tions (the subscript o is reserved for ambient
conditions at sea level as in Chapter 2). The
overpressure is Ap = P_- P/ ¢ is the speed of
sound in undisturbed air: and v is the ratio of
specific heats Cp/C,,. Other quantities are de-
fined by subheadings in the table.

A-4 Units, Constants, and Conversion
Factors

Since the most commonly used shock
wave equations are written in terms of dimen-
sionless ratios, the choice of units is purely a
matter of convenience: therefore, there is an
inclination to ignore the fact that certain equa-
tions must be handled more carefully. Examples
of these equations are the Rankine-Hugoniot
equations and the dynamic pressure equation.
Three consistent sets of units in common use are
shown in Table A-2. Conversion factors and sea
level values of various parameters are given in
the various units in Appendix B.

A-5 Equation of State of Air-

As air is heated by the compression of
strong shock waves, the specific heat ratio y de-
creases. Therefore, the equation that gives ¥ in
terms of the ratios of the specific heats, which is
based on the assumption of a constant v, is no
longer valid. The means of avoiding this problem
has already been stated in paragraph A-2: v, cus-
tomarily is redefined as that number which gives
the correct value for internal energy. Since ¥

Table A-2. English and Metric

Systems of Units -

Unit mks cgs English
length meter centimeter foot
mass kilogram gram pound.
force newton ~ dyne slug
time second second second
pressure newtons/m? dynes/cm? pounds/ft2
density kg/m3 g/crn3 s]ugs/ft3
velocity m/sec cm/sec fi/sec
energy joule erg fi-Ib

appears frequently in shock wave equations to
replace an energy term, the new definition is a
convenient one. Note, however, that (except in
undisturbed air, where the new and old defini-
tions of vy agree) v is no longer the specific heat
ratio. Therefore, vy should not be used (for
example) to calculate sound speed in strongly
shocked air.

Figure A-2 shows the equation of state
of"air for altitudes up to 240,000 feet. The near-
ly vertical curves are the Hugoniot curves for air
at the indicated altitudes. The Hugoniot curve
for a given altitude shows the combinations of
peak pressure and peak density that are possible
behind a shock front moving into undisturbed
air, i.e., into air that is initially at the ambient
pressure and density corresponding to that alti-
tude. Curves that show the value of v assigned to
the air just behind the shock front cross the
graph as nearly horizontal lines. The curves that
cut diagonally across the graph show absolute
pressure (not overpressure) just behind the
shock front. The ordinate of the graph is shock
strength, which was defined in paragraph A-3.

A-6 Equations for Strong Shock
Waves in Air d

For shock strengths of 10 or more, accu-
rate calculations must use the nonideal equation

A-5
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of state data from Figure A-2. The appropriate
shock wave equations are derived in the same
manner as those shown in Table A-1. The princi-
pal difference is that two values of 4 appear, ¥
for the air ahead of the shock and v, for the air
just behind the shock front; the values in general
are not equal. The shock wave equations for
strong shock waves in air are listed in Table A-3.
Two approximate velocity equations, accurate
lv wiikin about 5 percent for shock strengths
greater than 5, are shown on the right. As in
Table A-1. the subscript s refers to parameters
behind the shock front, and symbols with no

subscript refer to ambient conditions.

Note that shock strength § is a direct
function of the absolute pressure P behind the
shock front, rather than of Ap, the overpres-
sure.* A shock strength of 1 therefore represents
a vanishingly weak shock wave: and. at sea level,

" a shock strength of 2 represents an overpressure

of 14.7 psi. Values for 4, must be obtained from
the equation of state data in Figure A-2.

il‘his definition is not universal; shock strength is defined in
reparts as Ap/P.

. Table A-3. . Equations for Strong Shock Waves.

Complete Equation:

High-Shock-Strength
Approximation:

Velocity of the Shock Front

( (¢ - 101+ ub) )”2
=¢

(s(vs + 1))‘/2
Us=c¢|———
2y

Particle Velocity Behind the Shock Front

_ 2\~
R PO l))

Density Ratio Across the Shock Front

CT T, - D - - )

) ((s - DlEw - D - (- DIV2
nT e 7, (1 + pk)
p, 1t uk

VX

Dynamic Pressure Behind the Shock Front




SECTION 11

!H PHYSICAL DESCRIPTION OF
OCK WAVE BEHAVIOR -

Nzwton's second law, which - relates
force to the change in momentum that it pro-
duces, provides straightforward explanations of
many shock wave phenomena.l In particular, it
explains certain reflection phenomena and the
way in which these phenomena determine the
forces produced by a blast wave when it strikes a
surface or a small object.

Acoustic theory also provides explana-
tions of blast phenomena. These explanations
are important because they appear frequently in
discussions of shock wave reflection. The follow-
ing discussion relates the acoustic theory explan-
ations with those that are based on Newton’s
second law.

A-7 Step Function Shock Wave

In most respects, the properties of the
shock front are independent of the shape of the
pressure waveform that follows the front. Shock
wave phenomena, therefore, can be explained in
terms of the simplest possible waveform: a
region of completely uniform pressure, density,
and particle velocity behind a planar shock
front. In such a wave, the shock front usually is
considered a mathematical discontinuity, in
which the ‘pressure, velocity and other param-
eters are step functions of position and time.

This type of simple shock wave may be
generated by the mechanism shown in Figure
A-3. A piston moves at constant velocity in a
frictionless cylinder (a piston velocity of 431
ft/sec, a number that will be used later for pur-
poses of illustration, produces a shock wave with

VELOCITY OF SHOCK FRONT = U
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CONDITIONS BEHIND.
SHOCK FRONT:

PARTICLE (WIND) VELOCITY = u
DENSITY =p,
PRESSURE =P,

ENERGY PER
UNIT MASS = E

CONDITIONS IN AMBIENT AIR:

PARTICLE VELOCITY = 0

DENSITY = p
PRESSURE =P
ENERGY PER

UNIT MASS = £

Figure A-3. . Idealized Shock Wave .

A-8



an overpressure of 10 psi). The compressed air
that constitutes the shock wave is uniform in
densitv, pressure, and velocity.

The step function shock wave differs
frorm the blast wave from a nuclear burst in that
the latter: (1) becomes weaker as it propagates
away from the burst; (2) produces a decaying
rather than a constant overpressure after the
shock front passes a given point; and (3) has a
spherical rather than a planar shock front. How-
ever, these differences are unimportant in the
development of most of the concepts that apply
to the shock front. As a result of its long over-
pressure duration, the blast wave from a high
vield nuclear weapon is in many respects com-
parable to the idealized shock wave of Figure
A-3.

A-8 Shock-Front Formation .

The piston shown in Figure A-3 will re-
quire an interval of time to reach its final ve-
locity. While it is accelerating, the pressure at
the face of the piston will increase steadily. The
pressure wave that the piston generates during
this time lacks the abrupt pressure rise character-
istic of a shock: however, differences in the ve-
locities of different parts of the pressure wave
ultimately will cause a shock front to form.
Small pressure disturbances travel at the local
enead of sound. In the air compressed by the
piston, two factors cause this speed to differ
from the speed of sound in ambient air; (1) com-
pression of the air raises the air temperature,
thereby increasing the speed of sound; (2) in
moving air, pressure disturbances move with a
velocity that is the vector sum of the air and
sound velocities. .

As the piston starts to move, it creates
an 1nitial pressure disturbance that propagates
ahead of the piston (to the right in Figure A-3)
with a velocity equal to the velocity of sound in
ambient air. By the time the piston reaches its
fina! velocity, it will have produced a pressure
wave that can propagate considerably faster than

the ambient speed of sound. The wave produced
by the high pressure just ahead of the piston
soon overtakes the lower pressure wave, and a
shock front is formed.

After steady-state conditions are reach-
ed, the shock front moves at supersonic velocity
with respect to the undisturbed air but at sub-
sonic velocity with respect to the air behind the
shock front. Ahead of the shock front, there is
no early pressure increase to indicate the im-
pending arrival of the shock wave. If such an
early pressure wave were present, the shock
front would overtake it. Behind the shock front,
whatever pressure irregularities that may form
can overtake the front and merge with it. The
tendency for all pressure gradients to concen-
trate at the shock front is so strong that moder-
ately strong shock waves in air generate shock
fronts that are only a few atomic mean f{ree
paths (mfp) thick (at sea level, 1 mfp is about

1073 cm).

A-9 Pressure-Momentum action
at a Shock Frontﬁ

Before applying Newton’s second law to
a reflection problem, it will be examined with
respect to a step function shock wave shown in
Figure A-4. This is a simple problem that re-
quires little more than a sample calculation. It is,
however, useful as a preparation for the reflec-
tion problem that is discussed below. Numerical
values of pressure, density, and velocity, calcu-
lated from the equations in Table A-I, appear in
the figure.

To evaluate Newton’s second law, it is
necessary to determine the momentum change
per unit time and the force that produces the
change. If a unit area of the shock front is con-
sidered, the force is numerically equal to the
shock wave overpressure Ap, which in this
example is 10 psi. To obtain a consistent set of
units, this pressure must be expressed as 1,440
Ibs/ft2.

A-9



CONDITIONS BEHIND

SHOCK FRONT:
u = 431 ft/sec
¢, = 1,205 ft/sec
P, = 247 psi
p. = .00343 slugs/fta

VELOCITY OF SHOCK
FRONT

U = 1,405 ft/sec
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10 psi

Ap =

AMBIENT CONDITIONS:

P

P
c

-Figure A-4. . Parameters

The mass of air that enters one square
foot of shock front area each second is the
ambient density, .00238 slugs/ft3, times the
shock front velocity of 1,405 ft/sec. This air is
given a velocity of 431 ft/sec as it enters the
shock wave. Thus,

Ap

1,440

a

pUu, or

.00238 x 1,405 x 431

A-10 Normal Reflection at a
Solid Barrier

- Figure A-S5 shows a 10-psi shock wave
A-10

14.7 psi
.00238 slugs/ft>
1,116 ft/sec

of a 10 psi Shock Wave .

that has struck the end of the cylinder and has
formed a receding shock wave. Behind the reced-
ing shock front, the air is stationary. The ve-
locity change at the reflected shock front has
the same magnitude (but the opposite direction)
as the velocity change of 431 ft/sec at the inci-
dent shock front. However, the pressure jump
Ap, across the reflected shock front is greater
than Ap because more mass per second is involv-
ed (see Figure A-5). The difference results prin-
cipally from the higher density of the air enter-
ing the shock wave, but also results from the
greater relative velocity, 1,491 ft/sec, between .
the shock front and the incoming air.
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CONDITIONS IN INCIDENT SHOCK WAVE:

a4

24.7 psi (= P +°10)

s 231t VELOCITY OF
u-= sec
REFLECTED
= 3
p, = .00343 slugs/ft SHOCK FRONT =
v 1,060 ft/sec
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CONDITIONS IN REFLECTED SHOCK WAVE:

= 15.3 psi

40.0 psi (= P + 25.3)

P, =
u, =0
p, = 00482

Figure A-5. . Reflection of a 10 psi Shock Wave from a Solid Barrier -

Tt equation expressing Newton’s sec-
‘ond law may be obtained from basic physical
principles, or it may be obtained from equations
given in Section I by changing the frame of
reference to one that is stationary with respect
to the air ahead of the reflected shock front.

Ap = pUu, .

.00343 (1,060 + 431) 431,

153 x 144

2,220

- Tne reflected overpressure, Ap,, is the
amount by which the pressure at the reflecting

.00343 x 1,491 x 431

surface exceeds ambient pressure. It is the sum
of the pressure jumps across the incident and the
reflected shock fronts, or 25.3 psi.

Acoustic theory often draws on the use-
f ncept of images to explain the shock wave
patterns produced at a reflecting surface. The
reflecting surface is equivalent to a plane of
symmetry. In the foregoing example, the image
created by the reflecting surface would be a sec-
ond piston, moving to the left with a velocity of
431 ft/sec, and located as far to the right of the
reflecting surface as the real piston is to the left
of it. As the two shock waves of equal strength
collide, they produce conditions equivalent to
those shown in Figure A-5.
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Explanation of the strength of the re-
flected shock front does not follow as readily
from acoustic theory as does the basic shock
wave pattern. Acoustic theory began with the
study of sound waves, which have such low
amplitudes that air acts as a linear medium. In
such a medium, pressures are additive, and the
wave reflected by a perfect reflector has the
same amplitude as the incident wave. Shock
wave effects are decidedly nonlinear, as is shown
in the preceding example.

Acoustic theory explains that the pres-

ump of 15.3 psi instead of 10 psi at the
reflected shock front is caused by the effect of
dynamic pressure. Mathematically, this is a con-
venient explanation. For shock strengths less
than about 10, the equations

ap, Ap + 24 ¢

and

Ap, 20p + 2.4 g
give correct values for Ap |, the pressure jump at
the reflected shock front and Ap_, the reflected
overpressure. The constant 2.4 is valid for air
subjected to low shock strengths. In general, the
constant has the value y + 1.

Phvsically, however, the explanation is
aruficial. In the sense that dynamic pressure ef-
fects are the effects caused by the momentum of

air in motion, 4p, is produced entirely by dy-
namic pressure. The basic acoustic theory fails
to predict shock wave phenomena. Predictions
are possibie only from a modified theory, tailor-
ed to fix experimental facts, and experience in
using this theory is necessary to use it success-
fully.

A-11 Pressures on Simple Shape

H Two examples will be used to illustrate
enomena that occur when a blast wave
interacts with a target. ’

The first example is the steady-state
pressure pattern around a sphere placed in the
path of the shock wave. Figure A-6 shows the
nature of this pattern after the shock front has
passed. and equilibrium conditions apply.

This problem is more complex than the
one discussed in paragraph A-10. The air par-
ticles directed exactly toward the center of the
sphere reach the stagnation point, a point on the
sphere at which the air is brought to rest, and
the momentum that these particles give up may
be calculated readily. All of the other air par-
ticles affected by the sphere behave in a more
complicated way. They are slowed down and de-
flected, but they are not stopped.

An order-of-magnitude equation for
OICcc may be obtained by assuming that all of
the air directed toward the sphere is stopped.
The momentum per unit area per unit time di-

’/////////////////////////////////////
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Figure A-6. - Reflection of a Shock Wave by a Small Object -



rected toward the sphere is p_u (the mass flow
per unit area per unit time). Application of
Newton’s second law shows that the wind pres-
sure is about

F/4 = psuz.

A detailed analysis would show that the pressure
produced at the stagnation point of a sphere in a
moderately strong wind is more closely approxi-
mated by dynamic pressure, which has a value
that is just half of that given by the previous
equation

q == pu.

|_)|...—- ’

. Therefore. the wind pressure at the stag-
nation point on the sphere js roughly

x .00343 x (431)?,

K
]
B

318.58 Ibs/ft?,

= 2.2 psi

Total pressure at the stagnation point is about
12.2 psi, the sum of the static overpressure and
the dvnamic pressure.

The important point in this example is
that the high pressure region around the object
is stationary, not moving forward to meet the
oncoming air as was the receding shock wave
shown in Figure A-S5. Consequently, the rate at
which air enters the high pressure region is
lower. The rate at which momentum is extracted
from incoming air is correspondingly lower. By
Newton’s second law, the pressure developed is
smaller.

Acoustically, no reflection is considered
to occur in this example. The problem is simply
one of an object in an airstream.

The second illustration is the transient
interaction between a blast wave and a small
cube. This type of interaction is largely a com-
bination of those already discussed. For simplic-
ity, the blast wave is assumed to strike one side

. of the cube head-on. Shortly after the shock

front strikes the cube, the reflection process is
much like that produced at the closed end of a
piston (Figure A-5). A receding shock wave is
formed, the mass flow rate into this shock wave
is high, and the front face of the cube is sub-
jected to a high reflected overpressure (25.3 psi
for a 10 psi incident shock wave).

At the edges of the front face of the
cUdU<, the layer of compressed air in the receding
shock wave is unconfined. It flows outward.
around the edges of the cube. This outward flow
relieves the high pressure behind the receding
shock front. As a result of this pressure relief,
the receding shock front loses velocity; conse-
quently, the incoming air gives up its momen-
tumn at a decreasing rate. A steady-state flow pat-
tern develops, and the pressure at the front
surface of the cube drops to roughly the inci-
dent overpressure plus the incident dynamic
pressure. The situation is now similar to that
shown in Figure A-6.

Part of the acoustic explanation is very
descriptive. Pressure relief waves form at the
edge of the front surface of the cube and propa-
gate inward. Reflections that occur when these
relief waves meet increase the rate of flow over
the front face and around the edges of the cube.
The time required for the steady-state flow pat-
tern to develop is about two or three times that
required for a shock wave to travel from the
edge of the cube to the center of the front face.

The remainder of the acoustic explana-
tion 1s evident only to a person familiar with
acoustic theory or to a person who has previous-
ly encountered this particular explanation. It in-
volves understanding: (1) the reflection coef-
ficient of an object becomes small as the wave-
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length of the incident sound wave becomes large
compared with the dimensions of the object:
and (2) a pressure waveform has an equivalent
spectrum of sound waves of different wave-
lengths (strictly speaking, the equivalent spec-
trum requires a linear medium and is only an
ap jmation in strongly shocked air).
?These acoustic concepts, applied to the
problem of reflection from a small cube, predict
that the cube will reflect the shock front strong-
ly, but that the reflection coefficient of the cube
will decrease rapidly after the shock front
passes. The reflected wave weakens by spherical
divergence as it propagates away from the cube.
and the pressure on the front face of the cube
decreases to its steady-state value.

(Alternate Analysis)

q In the conventional derivation of the
Rankine-Hugoniot equations (paragraph A-1),

the algebra tends to obscure the physical picture

A-12 The Rankine-Hugoniot E?uations

associated with the derivation. The following -

" analysis provides a more intuitive introduction
to the subject.

The interaction at the shock front is
basically an inelastic collision. The truth of this
statement is evident from the definition of an
inelastic collision. It is a collision in which the
raltidine hodies stick together and move with a
common velocity after they collide.

The statement given above provides a
method to account for the energy exchanges
that occur at the shock front. It may be applied
most readily if the collision is considered to
occur between a very thin layer of unshocked air
and the mass of air behind the shock front. The
following statement may then be confirmed

ily

The inelastic collision at the shock front
is 30 percent efficient in transferring Kkinetic
energy to the incoming air. A change to the
ceiter-of-mass frame of reference is the first step
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necessary to demonstrate this fact. Since the
mass of air being picked up at any instant is
infinitesimal, this frame of reference moves with
the air behind the shock front. The initial ki-
netic energy per unit area of the shock front is,
in this frame of reference, that of the thin laver
of unshocked air approaching the shock front
with a relative velocity of u. If its mass is dm, its
initial kinetic energy is*

d(KE) = % uldm.

After a completely inelastic collision, the kinetic
energy in the center-of-mass frame of reference
is zero.7 In other words, the amount of energy
that is converted from kinetic energy to internal
energy in the collision is equal to d(KE).

In the original frame of reference (sta-
ti y with respect to the unshocked air),
d(KE) is equal to the kinetic energy of the thin
layer of air after it has become a part of the
shock wave. Thus, the kinetic energy imparted
to the air and the kinetic energy converted to
internal energy by the inelastic collision are
equal, i.e., this method of transferring kinetic
enerev is 50 percent efficient.

Accounting for all of the work done at
th® siock front is complicated by an energy ex-

.+ rigorous derivation of the equations governing the in-
elastic collision of two bodies requires the simultaneous solution
of the energy and momentum equations of the system. If a large
mass and a very small mass are approaching one another with
equal and opposite momenta, the kinetic energy of the larger
mass is negligible compared to the kinetic energy of the smaller

iBy definition, total momentum in the center-of-mass frame
lerence is zero. Since momentum is conserved in the colli-
sion of two bodies, the total momentum remains zero after any
collision. After a completely inelastic collision, neither of the
colliding bodies is moving with respect to the center of mass;

thereflore, their final kinetic energy in this frame of reference is

#Almough kinetic energy changes with changes in the frame
eference, the energy loss in an inelastic collision does not.



change that js independent of the exchange pro-
duced by the inelastic collision. The tctal work
done on a unit mass of incoming air results from
th2 pressure Ps that is behind the shock front
moving through the distance required to com-
press this mass of air from its initial volume V to
its final velume V7.

W = BV = V).

!
total
One portion of this work is done by the ambient
pressure P in displacing the volume ¥ - V. Since
the ambient pressure does not produce a force
that has directional characteristics, it has no
function in setting the air in motion. This por-
tion of the work only contributes to com-
pression,

Woome = POV = 1)

comp

The remainder of the work is done by the over-
pressure Ap = P_- P, displacing the volume I -
V.. At the shock front, the effect of overpres-
sure is completely directional, and overpressure
creates the force that accelerates the air that is
overtaken by the shock front. This is the portion
of the work that is required to produce kinetic
energy by a collision process,

Wy = B - PV = V).

As already demonstrated, half of this work ap-
pears as kinetic energy and half as internal ener-

gy of the unit mass of air added to the shock

front. Note that the work,converted to internal
energy by the collision process is closely related
to W ., in that both contribute to compress-
ing the gas to the volume V_ and, in this way,
both increase the internal energy of the air.

The energy exchange equations for a
un ass of air entering the shock front follow

directly from the discussion in the preceding

paragraph. The kinetic energy added to the unit
mass of air is ’
Lo

2

!
ucol]'

L

2
. ] .

?(.Ps - P)(V - I’s),
and the particle (wind) velocity is

u= (P, - PYV - V)2,

The change in internal energy of the unit mass
of air is

E -E=

l
=
+

hof =
=

r i l r r
P -1) +-2—(Ps - Pyr-1r)

s

] . .
E(Ps + PV - ).

To obtain the equation for shock front velocity,
note that while the air in the shock wave moves
into a volume V - V_, the shock front has ad-
vanced through a volume V. The ratio of shock
front velocity to particle velocity is therefore

U V

u V-Vs

V R
v - (V—r> (&, - P - V)
P - P\
U=V (—ms-) .

The equations for u, (!:'s - E), and U are the
Rankine-Hugoniot equations given previously in
paragraph A-1.
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!,’\'mc: Although the interaction at the
shock front is completely inelastic, the overall
reaction of a blast wave in free air is partially
elastic. In such a blast wave, the pressure behind
the shock front is not constant, but decays with
time. The air behind the front expands and re-
turns energy that helps to propagate the shock
wave (see footnote to paragraph 2-33, Chapter
23 This ot Joss not alter the validity of the
arzument presented above. It simply points out
that the inelastic collision at the shock front
only describes part of the mechanism of blast
wave propagation. :

A-13 Dynamic Pressure

F Dynamic pressure is frequently equated
o the wind force produced on a target by the
high velocity winds in a blast wave, but the rela-
tion between force and dynamic pressure is not

icsimple.
One source of confusion is the name
which implies a meaning that differs from the

correct one. In a compressible fluid, the true
meaning of dynamic pressure is limited to the
mathematical definition

2

o
n
M' —_

pgu

where p 15 mass per unit volume and u is par-
ticle velocity behind the shock front. Strictly
speaking, g is not a pressure. A body moving
along with moving air will not feel a force that is
attributable to dynamic pressure. Dynamic pres-
sure is Kinetic energy per unit volume. Reasons
for calling it a pressure are: (1) it has the dimen-
sions of pressure; and (2) this energy can be used
to deveiop a pressure.

A stationary body exposed to a wind
will experience pressures that differ at different
points on its surface. The highest pressure on the
bndv ic the stagnation pressure, which occurs
wherever the air is completely stopped by im-
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pact with the body: For example, if the body is
a sphere, the stagnation pressure occurs at the
point on the surface that faces directly into the
wind. For an incompressible fluid, stagnation
pressure is simply the sum of the free-stream
static pressure and the free-stream dynamic pres-
sure. However, for a compressible fluid, such as
air, stagnation pressure is the sum of the free-
stream static pressure and a quantity called the
free-stream impact pressure. At low velocities,
impact pressure and dynamic pressure are essen-
tially equal, but at velocities that are appreciable
compared with sound speed, impact pressure
rises above dynamic pressure. When wind speed
is equal to sound speed, impact pressure exceeds
dynamic pressure by about 28 percent.

he forces exerted by strong winds cor-
reSpond more directly to impact pressures than
to dynamic pressure. This suggests that weapons
effects calculations should be based on impact
pressures rather than on dynamic pressures: but,
both in this field and in aerodynamics, dynamic
pressures are employed more commonly. The
choice is based on conventional practice. In
aerodynamic problems, dynamic pressure is used
because it may be calculated readily. Wind force
on an object is calculated from the equation

F, = Cphq4
where Cp, is drag coefficient and 4 is an area
related to the size of the object. The drag coef-
ficient is not constant. It is a function of ve-
locity, and its variation absorbs not only the dis-
crepancy between dynamic pressure and impact
pressure, but also accounts for the net effect of
the complex pressure pattern that forms around
an object in an airstream. The product g4, al-
though it has the dimensions of a force, has no
direct physical relation to any force exerted by
the wind.

In weapons effects calculations, dynamic
pressure often is as convenient as it is in aerody-



namics: damage criteria for such objects as
buildipgs are established in terms of convention-
al shock wave parameters, such as overpressure,
dynamic pressure, or impulse. Consequently, the
stagnation pressure or other actual pressures
found at various points on specific structures
usually are not calculated unless specific blast
loading information is desired. In some cases,
the choice of dynamic pressure may not be ap-
propriate for damage criteria. For example,

when the air in the blast wave is dust Jaden (as it
is for certain combinations of yield, burst
height, ground range, and surface properties). a
measurement with a conventional dynamic pres-
sure gauge often is ambiguous. The dust is not
necessarily in velocity equilibrium with the air,
and the amount of dust is not known. As a re-
sult, it is often difficult to calculate the dynamic
pressure of air alone from such experimental
measurements.
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APPENDIX B

USEFUL RELATIONSHIPSR

B-1 General Equivalents

q One kiloton (kt) is defined to be 10!2
calorkes of energy release.* This amount of energy
will be released by the complete fissioh of 0.057
kg (57 grams or 2 ounces) of fissionable ma-
terial.¥ Equivalents to this amount of energy in
other units are: -

® 2.61 x 10°° million electron volts (MeV),

® 4.18x 10!7 ergs.

® |.16x 10° kilowatt-hours,

® 3.97 x 10° British thermal units.

Some equivalents of the complete con-

version of mass to energy are:

1 gram mass = 5.61 x 10%® MeV
8.99 x 102° ergs
2.15 x 10'3 calories

The temperature associated with one
eleCtion volt is 11,605.9 degrees Kelvin.

B-2 Constants
q Velocity of light: 3 x 108 m/sec = 3 x

10"V cm/sec.
- Avagadro’s number: 6.023 x 1023 mole-
cules per mole (gram molecular weight).
Planck’s constant: 6.625 x 1027 erg-sec.
Boltzmann constant: 1.38 x 1016
erg"K. . ‘
¥ Mass of electron: 9.1085 x 10°28 gm.
1 Mass of proton: 1.672 x 1024 gm.
Mass of neutron: 1.675 x 1024 gm.
¥ Mass of alpha particle: 6.64 x 1024 gm.
Loschmidt number: 2.687 x 10!? mole-
cules of ideal gas per cubic centimeter at °C.

. Electfon charge:

4.803 x 1010 esu=1.602 x 1029 emu
=1.602 x 10°!% coulombs.

B-3 Standard Sea Level Atmosphere .
- Pressure = 14.696 psi
'=2,116.22 Ib/ft?

1,013.25 millibars
101,325, newtons/m?
1,013,250. dynes/cm?
. Temperature = S9°F

=15°C

= 288.15°K

=518.4°R

. Density =2.38 x 103 slug/ft3
=7.65 x 1072 Ib/ft3
=1.225x 103 gm/cm3
= 1.225 kg/m?

. Speed of sound =1,116.45 ft/sec

= 340.29 m/sec
= 34,029 cm/sec

See [ootnote on page 1-3 for the origin of the definition.

This is the energy released by the fission of §7 grams of
fisgonable material. It is nof the energy that would be released
by the conversion of 57 grams mass to energy.

' Classical rest mass.
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' Gravitational acceleration

= 9.8067 m/sec?
= 32,1741 ft/sec?

B-4 Conversions

. lencth: 1 f1

B-2

=0.3048 m
=30.48 cm
Im =328]ft
1 kft =0.3048 km

=(.1894 mi
=0.1645 nm
lkm =1,000m
| = 3.281 ft
= 3.281 kft
=0.6214 mj
=0.5396 nm
Imi  =5,280ft
1,760 yds
5.280 kft
=1.609 km
=0.8684 nm

] dyne = 1.0197 x 10°3 gm (weight)

2.2481 x 10°6 b (weight)

1 gm (weight) = 980.665 dynes

‘ =2.2046 x 103 Ib (weight)

=1x 103 kg (weight)

1 Ib (weight) =4.4482 x 105 dynes
= 453.59 gm (weight)
=0.45359 kg (weight)

Pressure:
1 dyne/cm? =1.0197 x 103 gm/cm?
=1 x 10"! newtons/m?

=7.5x10* mm
mercury (0°C)

=4.015x 10 in.
water (4°C)

= 2.089 x 10°3 1b/ft?

= 1.451 x 10°° 1b/in.2 (psi)
1.02x 102 kg/m?

- =1x 103 millibars

1 gm (wt)/cm? = 980.665 dynes/cm>

=980.665 x 107!
newtons/m?

10.0 kg/m?
2.048 1b/ft?
=1.422 x 10°% 1b/in.? (psi)

=735%x 10! mm
mercury (0°C)

= 0.394 in. water (4°C)
=980.665 x 103 millibars

11b (wt)/in.? (psi) =6.895 x 10° dynes/cm?

= 6.895 x 103 newtons/m?
= 703.07 kg/m?

= 70.307 gm/cm?

= 51.715 mm mercury (0°C)
=27.673 in. water (4°C)

= 68.947 millibars

= 100 newtons/m?

= 1,000 dynes/cm?

=1.45x 102 Ib/in.?

= 2.089 Ib/ft>

1 millibar

1 gm/cm3 = 1,000 kg/m?
=3.613x 102 Ib/in.3
= 62.43 Ib/ft?
= 1.94 slugs/ft3

1 kg/m3 =1x 103 gm/cm?
=3.613 x 10" Ib/in.?
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1 Ib/ft?

1 joule

| erg

1 ft-lb

1 Btu

- Velocity:

1 cm/sec

6.243 x 10?2 Ib/ft?
1.94 x 103 slugs/ft3

16.018 kg/m?
=5.787 x 10°* 1b/in.?
= 3.108 x 10°2 slugs/ft?
=0.5154 gm/cm?
=515.4 kg/m?

=1.862 x 10°2 1b/in.’3
= 32.174 lb/ft’

= 4.184 joules
=4.184 x 107 ergs
= 3.086 ft-1b
3.966 x 10°? Btu
1 x 107 ergs

=0.239 gm-cal
=0.738 ft-lb

= 9.480 x 10'* Btu
=1x 107 joules
=2.39x 10°% gm-cal
=7.38 x 108 ft-1b
=948x 10'!! Btu
1.356 joules

1.356 x 107 ergs

= 3.240 x 10! gm-cal
=1.285 x 10°? Btu
= 252 grn-cal

= 1,054 joules
=1.054 x 1010 ergs
= 778 ft-lb

=1x 10? m/sec

1.6018 x 10°% gm/cm?

1 m/sec

1. ft/sec

1 mi/hr

] knot

=3.281 x 10°? ft/sec
=2.237 x 10°? mi/hr
1.942 x 10°? knots
100 cm/sec

= 3.281 ft/sec

= 2.237 mi/hr
=1.942 knots

= 30.48 cm/sec
=3.048 x 10°! m/sec
= 6.818 x 10! mi/hr
=5921 x 10! knots
= 44.70 cm/sec

= 0.4470 m/sec

= 1.4667 ft/sec

= 0.8684 knots
=51.48 cm/sec
=0.5148 m/sec
1.689 ft/sec

=1.152 mi/hr
- Temperature:
°K =°C+273.15
°R =°F+459.4
°C =5/9 CF-32)
°F =9/5°C+32
Wavelength:
1A =108 cm
=100 m
=10%u
g =10%cm
=10% m
=10* A
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B-5 Fractiqnal Powers and Dimension
Scaling

Figures B-1 and B-2 provide the informa-
tion necessary to perform many of the fractional
power scaling operations required by equations
presented in this manual. The use of these figures
is demonstrated in Problem B-1. Figure B-3 is a
nomogram that shows the relationships among
the height of burst, the horizontal distance, and
the slant range. A straight line through any two
(known) of these quantities (on the appropriate
scale) will pass through the third (unknown)

B-4
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quantity on its scale. three dimensions must,
of course, be in the G units. The diagram
accompanying this nomogram should make its
use obvious, and no example is provided. While
Figures B-1 through B-3 are plotted accurately,
visual interpolation on these figures cannot pro-
vide accurate results. If tools such as a slide rule,
logarithm tables, or a calculator that can per-
form fractional power operations are available,
users of this manual are encouraged to make use
of those tools. Figures B-1 through B-3 are pro-
vided for those who desire a reasonable answer
in the absence of such tools.



_

Problem B-1. Use of Fractional Power Curves and Dimension Scaling Nomogram

Figure B-1 shows several fractional
powers of numbers between 1 and 100,000. The
fractional powers are those that are necessary to
apply various scaling procedures presented else-

where.
H Figure B-2 is a nomogram from which
actual dimensions may be obtained from various
scaled dimensions for yields from 0.1 kt to 100
Mt. The scaling power for which the scaled di-
mensions are applicable is indicated at the top of
the scale in each case. A straight line connecting
a yield with any scaled dimension will cross the
actual dimension scale at the proper value accord-
ing to the scaling which is being used. The di-
mensions may be in any units for which scaling
is given, but the scaled dimension and the actual
dimension will always be in the same units.
Example ] ' ]

Given: A 500 ki weapon is to be burst at
the minimum height of burst at which fallout is
not expected. A conservative height of burst is
desired.

Find. The actual height of burst at which
the weapon is to be detonated.

Sclution: From paragraph 5-22, the mini-
2. Zonscorvative height of burst for a S00 kt
weapon at which fallout is not expected is 180
WO 4 fr.

Answer a: From B-1
(500)°-4 = 12

180 x 12 = 2,160 ft.

Answer b: From Figure B-2. a straight line

. connecting 500 on the yield scale with 180 on

the 0.4 power scaled dimension scale crosses the
actual dimension scale at 2,160. The desired
height of burst is thus 2,160 feet, (Note. Con-
version from one scaling procedure to another
is particularly easy with the nomogram. The line
mentioned above crosses the cube root scaled
dimension scale at 270. Thus 180 W®# ft cor-
responds to 270 W!/3 fr for 500 kt.)
Example 2 .
Given: A ground distance of 2,580 yd from
an 80 kt surface burst.
Find: The proper distance to determine
overpressure from the 1 kt curves.
Solution. The applicable scaling is (Prob-
lem 2-9).
d
Fa

Answer a: From Figure B-1

= w'l/3.

(80)173 = 4.3,

= 1,800 ft.

Answer b: From Figure B-2, a straight line
from 80 on the yield scale through 2,580 on the
actual dimension scale intersects the cube root
scaled dimension scale at 600. The scaled distance
is 600 yards. The proper distance to enter the
overpressure charts is 1,800 feet.
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